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Figure 1: Naively matching a 3D costume pose to person’s pose (middle column), results in several parts of the person visible.

In this paper, we solve these problems with shape estimation of the costume, together with inpainting of the person’s body.

ABSTRACT

We describe a method to automatically augment a watertight digital

costume onto a person’s body from a monocular RGB image. When

overlaying a digital costume onto a body using pose matching,

several parts of the person’s cloth or skin remain visible due to

differences in shape and proportions. In this paper, we present a

practical solution to these artifacts which requires minimal costume

parameterization work, and a straightforward inpainting approach.

To our knowledge, our approach is the first to deliver plausible

watertight costumes from RGB imagery only, and is compatible

with mobile devices. We believe this can serve as a useful baseline

for future improvements and comparisons.
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1 INTRODUCTION

Imagine taking a selfie and magically wearing your favorite charac-

ter or hero’s suit. While we did see digital cloth added onto people

in the past, it was o�en with a depth camera such as a Kinect,

which is not always reliable in outdoor conditions, and is not as

widespread as monocular cameras on mobile devices. In this paper,

we carry out this concept from a single RGB image, in a manner

compatible with mobile devices.

People come in different shapes and sizes, and estimating the best

costume to fit their given pose and proportions is a challenge. While

recent work supports estimating shapes, it might not be the desired

solution to fully cover the body: artistic direction might require

the shape to remain slender or muscular, for example. Hence, we

approach this problem with a costume parametrization based on

different skeleton proportions (variations in limb lengths such as

legs and spine), and combine this with inpainting to remove the

remaining visible parts, such as cloth or skin from the person behind,

as shown in Fig.1.

Our solution is practical and requires minimal parametrization

work. Given a 3D costume, we manually create different versions

associated to a 3D skeleton of different proportions. Together with

a data set of poses, we optimize for the best matching 3D costume to

the person’s 2D skeleton (estimated from the RGB image using a 2D

pose tracker). Once the best matching shape (pose and proportions)

is found, we need to remove the remaining visible regions of the

person. To solve this, we estimate the person’s body mask we

want to remove (e.g. the body, but without the head or hands), and

proceed with inpainting the masked region. To inpaint, we capture

the background image without the person, and then compute a

projective transform—or homography—from four feature points in

the source image to the target image, followed by Poisson image

editing to match the surrounding color and lighting.

�e entire process runs in about ten seconds on a Surface Book,

without an optimized solution, and can produce high resolution

images if required. We show the results of our approach on various

poses and people; some of which are systematically successful. To

measure the quality of the results, we performed a qualitative study

quantifying the average likability of a set of poses across multiple

people. To evaluate the value of the different steps of our method,

we performed an ablation study showing the effect of each step of

our method.

2 RELATED WORK

�e vision of digitally augmenting the real world was first intro-

duced over fi�y years ago [38], and has since been revisited count-

less times as progress in hardware, computer vision and synthetic

imagery continues to be made—unlocking new possibilities for

communication, education and entertainment.

A good example could be the different real-time interactions

between digital characters and real objects possible using marker-

based tracking, first explored in 2006 by Barakonyi’s and his col-

leagues [3]. With recent progress in physics-based modeling of

character motion, Cimen et al. demonstrated more realistic reac-

tions and perturbations caused by real world objects onto the digital

character [12], increasing the realism of such experiences.

With progress in human tracking, several augmentation concepts

have been explored around body, face and hair—allowing people

to try on virtual make-up and glasses using face tracking [22],

hairs styles [24] using hair tracking, and clothing [15, 34, 35, 43].

In this work, we are focused on fi�ing a watertight costume to a

body from a single RGB image. Most cloth augmentation systems

such as Facecake’s Swivel [15] utilizes depth imagery (e.g. a Kinect)

(which is not reliable in outdoor conditions), constrained monocular

se�ings with a tracking costume and a uniform background [35],

or manual semi-automatic tracking [34]. While recent progress in

pose tracking from RGB imagery [10, 40, 45] has made it possible

to match the pose of a cloth automatically from RGB imagery, it

still leaves parts of the body behind visible (as shown in Fig.1), and

does not take into account differences in shape and proportions. In

this paper, we combine not only pose, but also shape estimation

together with inpainting to realise this concept of an automatic

watertight costume. And we now describe in more detail the recent

progress in these areas.

Pose Estimation Estimating a 3D pose from a single monocular

image is an inherently ambiguous problem due to depth and self-

occlusions. By synthesizing large data-sets of depth image and pose

pairs using a data-set of poses and cloth textures, it is possible to

regress models to classify pixels as belonging to different body parts,

or to directly output skeleton poses [7, 37, 49]. With deep learning,

this approach has also been shown to work with monocular RGB

images only [30, 31, 39, 44]. �e main drawback of this approach is

the lack of available dataset, the effort required to synthesize all the

pose-image pairs. A practical approach is to utilize the data-sets

that have been labeled with 2D joint positions, train a 2D pose

tracker such as the one proposed by Cao et al. [9], and to then li�

the pose in 3D using different approaches [10, 11, 40, 45]. While

pose estimation is sufficient for many applications, it falls short

when fi�ing cloth onto a person, which requires a good estimate of

shape.

Shape Estimation Estimating shapes from a single RGB image

is o�en approached using a template, or parametric body model

such as SCAPE [2] or SMPL [29], which is optimized to match

image features such as silhoue�es and 2D joints [5, 16]. Automatic

methods which yield accurate 3D shapes are restricted to naked

humans or tight clothing. A user can be involved to help the fi�ing

process [48]. Instead of this traditional multi-step approach where

a 2D skeleton is first estimated and then a 3D shape fi�ed, recent

work has trained 3D shape inference from a single RGB through

2D landmark correspondence loss [23] adversely with a 3D shape

consistency discriminator. It is worth taking a look at DensePose

[18], which trained a deep net on a newly annotated dataset of

2D body part patches. While these works are exciting, only a few

of the above mentioned data-sets are available publicly and for

commercial purposes. Hence in this paper, we used a two step

approach which first estimates a 2D skeleton, then optimizations

for the best shape—similarly to Keep it SIMPL [5], but with a simpler,

hand-cra�ed parameterization of the digital costume.

Inpainting To remove artifacts such as cloth and skin when

overlaying a digital costume, we need to fill the pixels with plausible

information such as the background behind the person. Inpainting

is the name of the trade for filling or restoring image gaps, and is a

well studied problem in image processing [17]. �ere is a dichotomy
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between methods that are aware of the background [20, 25], and

methods that “do their best” without [4, 13, 26, 42]. �ese later

methods seek to propagate the information in the best possible way

according to boundaries [4], or to texturize the missing information

in a statistically consistent manner with respect to local and global

structures [13, 26, 42]. Best results are nowadays obtainedwith deep

nets, which can learn higher order statics on images by training

on very large data sets [21, 28, 32, 46]. Without knowledge of the

background, these methods do not yield consistent nor exact results.

Using a pre-scanned background, Hays and Efros [20] search for the

closest image in a large database, and fill themissing parts by cu�ing

& pasting. Whyte et al. [41] also focused on other images, but of the

same scenes, using a homography transformation between 4 points

in the scene to map source and target images. Copy & pasting o�en

holds artifacts with edge disconnects. Darabi et al. [14] proposed

an advanced blending scheme that mixes different sources for a

smoother fill. More recently, Klose et al. [25] use the captured

images along camera parameters to estimate the scene information

(depth and color), and to then re-project the final visible color. In

our work, we choose the practical approach of using a homography

(as in [41]), followed by Poisson image editing to restore lighting

color and ensure smooth edge continuity.

Photoreal Digital Try On Recent progress in deep learning

applied to images has enabled virtual try-on of specific pieces of

cloth [19], or of full body appearance [47]. �ese methods utilize

large datasets of photoreal images. In fact, some recent work such as

[19] utilize no 3D information at all and are thus quite different from

our approach. We believe it is an exciting direction and it would be

interesting to evaluate these approaches on stylized characters and

depictions, or study how our synthetic compositions could enhance

the learning process.

3 3D COSTUME SHAPE

To summarize, our approach breaks down the problem of costume

fi�ing from a single RGB image into two main parts: a shape esti-

mation described in this Section, followed by mask estimation and

inpainting for the remaining visible parts, described in Section 4.

Hence given an RGB image containing a single person, our goal

is to find a costume shape which best fits the pose and proportions

of the person. Our 3D shape estimation follows a 2D inference

plus 3D matching type of approach as in [10, 11], but extended

with estimating proportions (Section 3.2) followed by refinement

(Section 3.3).

We first estimate the 2D skeleton with joint positions yi of the

person using a deep neural network [9] trained on labelled 2D

joint data COCO [27] and MPII [1]. We then parameterized the 3D

costume mesh with different 3D skeleton poses k and proportions

c (variations in limb lengths), resulting in p = c × k shapes in our

data set.

From the 2D skeleton, we optimize for the closest 3D pose k∗

in Section 3.1, then search for the optimal proportions c∗ using

a heuristic that favors shoulders and hips for closer perceptual

similarity in Section 3.2. �e final pose is close to the 2D skeleton,

but could still be refined. Hence we perform a final full space

refinement optimization to match more exactly the limb directions

and joint positions of the 2D skeleton, as described in Section 3.3.

3.1 3D Pose Match

For each pose k in the data set, we optimize for the rigid transforma-

tion that will bring the 3D pose, closest to the 2D projected skeleton,

in terms of joint positions similarity. �e global transformation of

a 3D pose is parameterized with 4 degrees of freedom: one rotation

around the y axis, together with three global translations.

Formally, for each pose Xk
= {xi }

k defined as a set of joint

positions xi , we optimize for a reduced rigid transformation M

composed of a rotation around the y axis Ry , and three transla-

tions T—resulting inM = T Ry—that minimizes the similarity cost

between the 3D projected joint positions P M xi and the 2D joint

positions yi , where P is the view and projection transformation of

the camera. Finally, we go through all the optimal transformations

and pose pairs k,M , and pick the one that has the smallest cost

value, resulting in the following optimization problem:

k∗,M∗
= argmin

k

min
M

Ep =

|X k |∑

i

| |yi − P M xi | |
2
. (1)

We optimize the transformation M using gradient-based opti-

mization along numerical derivatives. �is requires initializing the

3D pose front facing the camera as to ensure convergence towards

a sensible solution.

3.2 Proportions Estimate

Given our closest pose k∗, we seek to choose the closest matching

proportions c∗ to be�er fit the 2D skeleton. In our experiments, we

found that comparing the sum of all joint positions, such as in the

previous section, did not lead to perceptually similar proportions,

or resulted in confusing the optimization (1) into the wrong pose.

We found that focusing on the shoulders and hips, which are visu-

ally more prominent, yielded be�er results perceptually, and more

robust pose and proportions pairs.

Figure 2: Our three shapes with variations in limb lenghts.

�e arms and legs are longer on the le�, and shorter on the

right. A better estimate of the proportions helps the refine-

ment of the pose converge to a better solution.

Our selection criteria is based on two features f =
[
fs/w , fh/w

]

measuring the shoulder-to-waist ratio fs/w , and the shoulder width

versus average upper body height ratio fs/h , defined as:

fs/w =
| SL − SR |

| HL − HR |

fs/h =
2 · | SL − SR |

| SL − HL | + | SR − HR |
,
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where SL and SR are the le� and right shoulders, and HL , HR the

hips of the skeleton in 3D.

We select the 3D shape c which has the closest feature vector to

the target 2D skeleton features ft when inverse projected onto a

plane centered on the 3D costume. Specifically, we pick the shape

c that minimizes the weighted sum at the L2 norm:

c∗ = argmin
c

‖w [ft − fc ]
T ‖2.

wherew = [w0 w1] are both equal to 1 in our implementation.

While there is a variety of different proportions in people, we

found that three main modes (| c |= 3) was sufficient to span most

of our subjects, and represented a satisfactory compromise between

speed, set-up complexity and quality. Additionally, the refinement

step discussed next can contribute to fixing slight proportion mis-

matches in 2D, as we optimize in 3D allowing the limbs to visual

shorten when projected onto the screen.

3.3 Global-local Refinement

Figure 3: We optimize globally for the root position to adjust

the scale, and alternate with local optimization of the joint

angles in a back-and-forth manner, to finally converge to a

well matching pose.

At this point, we have a 3D shape (pose k∗ and proportions c∗)

which is close to the person’s shape, but is still different in the exact

bone orientation and joint position, as shown on the le� in Fig.3. To

remove these differences, we perform an additional refinement step

with respect to the full degrees of freedom of the 3D character: the

joint orientations Q = qi and the root position x0 of the character.

Because bone positions may not match exactly, we weight down

this objective in optimization (1), and add an additional objective

function which seeks to match the bone directions, resulting in the

following optimization:

Q∗
, x∗0 = min

Q ,x0
wp Ep +wdir Edir ,

Edir =
∑

i

‖(yi − yp(i)) − (PM∗xi − PM∗xp(i))‖
2
,

where p(i) is the parent of i . We solve this problem in a global / local

fashion where we optimize for the global position while keeping

the orientation fixed, and solve for the individual joint orientations

while keeping the position fixed. Both of these steps are performed

using local gradient descent along numerical derivatives.

Figure 4: We first estimate the person’s mask using the esti-

mated 2D skeleton andGrabcut. �en we define a Homogra-

phy transformation from target image coordinates to source

(background) coordinates in order to color the masked pix-

els. Finallywe apply Poisson image editing to fix the remain-

ing color discrepencies.

We now have a costume that matches closely in pose and pro-

portions, but when overlayed over the person, leaves cloth and skin

from the person visible, as shown on the right in Fig.3. We remove

these in the next section by estimating a 2D mask and inpainting.

4 INPAINTING AND COMPOSITION

�e costume shape overlayed on the person at this point still has

cloth or skin visible, as shown in Fig. 4. To remove these artifacts,

we estimate the 2D mask of the person’s body and head, and then

inpaint the body area using background information. When render-

ing the 3D costume, we can obtain an odd look when the lighting

and shadows differ from the real world, and when the costume ap-

pears plastic or unnatural. Hence we estimate the lighting direction

by sampling the picture, and filter the final render to produce a

more natural look for the costume.

4.1 Masking

To compute the 2D mask, we use Grabcut [36], which requires an

initial labelling of the foreground, probably foreground and back-

ground pixels. We use the estimated 2D skeleton, and set foreground

pixels that are within a distance r of a few pixels of the joint posi-

tions, and within 2r of the skeleton bones—defined as lines between

joints. For the head specifically, we set a slightly larger ellipse to

indicate the facial pixels to obtain a more precise boundary. Pixels

within a larger radius are marked as probably foreground, while the

rest remains assumed background. We run the algorithm for 5 iter-

ations which yields reasonable results in most cases. With complex

backgrounds, it sometimes misclassifies pixels. To circumvent this

problem we simply inflate the mask to be inpainted. �e final result

can be seen in Fig.4.

4.2 Inpainting

Our goal is to color the masked pixels with plausible underlying

scene values. Hence we capture the environment (with a video)

and seek to find the pixel colors that best match the structure of

the captured background, while resembling the colorization of the

target picture.
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Figure 5: Our optimzation may result in large deformations when misclassifying the person’s proportions (le�). Another

issue is we do not track the 2D feet orientation at the moment, and cannot reproduce this pharao pose at the moment (middle).

Similarly limgs crossing are not prevented for the moment in our optimization. Estimating the mask area of the face in the

legs crossing pose, without the hands, is challenging. Finally, poses that expose the inner area of the mesh are not taken into

account at the moment, and methods to adress this are discussed in our results section.

Figure 6: Average likeability score for the 9 poses, performed by 7 subjects. Some of the poses are well handled accross people,

others yield mitigated likebility, while others are not well handled by our current method.

Our solution consists in computing a projective transformation

(a.k.a Homography) from the closest matching background with

respect to camera parameters, to the new target image, using 4

corresponding points in the images: in our case, the 4 corners of

the AR Poser poster. When capturing the background, we record

the camera position x
′
and orientation q

′
. Given a new camera

position and orientation x and q (at runtime), we search our dataset

for the nearest background image. Note that for speed we used a

KD-tree.

Given the nearest background image, we want a warping func-

tion that maps coordinates x,y in the target image, to coordinates

x ′,y′ in the source (background) image. �is requires a projective

transformation, which is possible in higher dimensions (i.e. 3) using

four points that correspond in both images, by using the homoge-

nous coordinates trick. We first define a transformation that will

map the first 3 canonical coordinates (e.g.
[
1 0 0

]T
) to the first

three coordinates of the target image:

H =
[
x1 x2 x3

]


λ 0 0

0 µ 0

0 0 τ



a�er dehomonization. For example, the trivial caseH
[
1 0 0

]T
=

[
λx1 λy1 λ

]T
, which a�er de-homogenization (dividing by λ),

results in
[
x1 y1 1

]T
, thus mapping correctly to x1. To define

λ, µ, τ , and thus H , we leverage x4 and map
[
1 1 1

]T
to the last

point x4, resulting in

H



1

1

1


= x4 ⇔ X



λ 0 0

0 µ 0

0 0 τ





1

1

1


= x4 ⇔



λ

µ

τ


= X−1x4.

Now that we have H , mapping cannonical points to target points

X , we can compute a similar mapping H ′ from cannonical points

to source X ′. Hence, we are able to close the loop by inverting

H and mapping target points to source points in order to find the

corresponding colors, resulting in:
[
x ′ y′ w ′

]
= H ′H−1 [x y 1

]
(2)

which needs to be de-homogenized to obtain the final coordinates

in the source image.

Now sampling pixels from this function yields similar color and

structure, but does not ensure boundary smoothness and color

consistency, as can be seen in Fig.4. Hence we further optimize

the pixel values to blend with the target image by minimizing the

target color gradient while preserving the source color gradient—a

method known as Poisson image editing [33]. We solve this using

an existing packaged solution in OpenCV [6].

4.3 Composition

We render the 3D costume using rasterization rendering in Unity.

Simply overlaying the inpainted picture with the rendered costume

might hide parts of the head of the target person. To avoid this,

we a�ach a simple, transparent 3D object approximating a generic

human head to the neck-bone of the character’s rig, which acts as a

depth mask during the render pass and occludes the relevant parts

of the costume.
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(a) (b)

(c) (d) (e) (f) (g)

Figure 7: To judge the importance of each step in our

method, we performed an ablation study by computing the

results with the full pipeline, each time leaving out on step.

Image (b) shows the result with all steps applied to source

image (a). �e bottom row shows the partial results with: (c)

no proportion estimate, (d) no size refinement, (e) no bone

direction refinement, (f) no inpainting and (g) no approxi-

mate head masking.

As for the rendering, we use a single directional light to approx-

imate the scene lighting. When the light direction is different from

the one in the picture, the rendering looks odd. Hence we need to

find an appropriate lighting direction, which we do by sampling the

face of the person in the image. Additionally, Phong shading tends

to yield plastic-looking materials, which differs from the overall

feel of the picture. Our quick fix is to add noise to the costume’s

rendering.

To estimate the lighting direction, we use the 2D face landmarks

from the 2D pose estimation to sample different points in the source

picture. We then sample their HSV values by averaging the neigh-

boring pixels. In particular, we use points around the cheeks and

forehead since they tend to have less unwanted noise in comparison

to glasses or hair. �anks to the face joints we can also align a 3D

mesh of a face to match the joint positions.

By sampling the same set of points over the 3D mesh, we can

read the normal direction of that vertex, and by a weighted average

of the normals multiplied by the value of the pixels, we can infer

a rough approximation of the direction of the light source. We

use the resulting vector to set the new rotation of a directional

light that illuminates the virtual costume and creates shadows in

the ground. A more accurate approach is described in [8], but an

implementation in this context is le� for future work.

5 RESULTS AND DISCUSSION

We created a system to accurately overlay a person in a monocular

RGB image with a watertight 3D costume matching in proportions

and pose. It furthermore improves the quality of the result by

removing visible artifacts of the source picture by inpainting the

relevant areas, but keeping specific body parts of the target person,

resulting in a realistic image composition, at arbitrary resolutions.

We performed both an ablation study of the different steps of our

approach (5.2, demonstrating their effect on the final outcome, as

well as a qualitative study (5.1) assessing the quality of the results

for different poses (and body proportions).

All results were generated using our in-house implementation:

the pictures are taken from a surface book, sent to a server for the

2D skeleton estimation (running a pose tracker on the GPU). �e

skeleton is sent back to the device which processes the skeleton

and image to match the shape and perform inpainting. �e whole

process takes about 10 seconds, from which two thirds is used by

computing the segmentation with Grabcut [36] and the inpainting

using Poisson image editing [33]. Our code was not optimized for

speed.

5.1 �alitative Study

Our data set holds 12 poses and we performed a qualitative user

study of 9 poses, similar to the most recurrent ones people do. We

had 7 different person perform the 9 poses. We then showed the

results different people and asked to rank the likability of the results

as binary value: 1 for like, and 0 for do not like. �e average of

the evaluations shown in table 6 resulted in 4 of the poses with a

success rate above 80 %, with 3 having 100%, 3 having mitigated

likability, and 3 being systematically unconvincing (bellow 20%.

�e mitigated likeability we believe are due to two main artifacts.

We sometimes obtain large deformations when our proportions

classification fails, which causes the subsequent refinement stage to

over-compensate resulting in la large deformations, as shown in on

the le� in Fig.5. �e second artifact is the collar, which sometimes

overlap with the mouth, which changes the nature of the costume.

We think this could be addressed by fi�ing a 3D head model to the

person’s face, and avoiding interpenetration of the costume with

the head.

�e systematically unconvincing results we believe are due to

poses are method cannot handle properly at the moment. Our

optimization (sections 3.1 and 3.2) does not hold 2D feet markers,

and so we fixe the orientation the feet—preventing from matching

the sideways pose of the pharao, as shown in Fig.5. Similarly, we

do not avoid intersections between limbs, which can cause the

legs crossing pose to fail in most cases. �is could be improved

with a subspace optimization of the costume shape, or similarly

by restricting the bones to anatomically plausible angles. Finally,

the “wow” pose which leans forward exposes the inner area of the

mesh, which our method does not handle automatically. We would

need a 3D model of the person’s head to cull the back side of the

mesh from being visible a�er rendering.

5.2 Ablation Study

To evaluate the effect of the different steps as well as their necessity,

we generated the results by iteratively leaving one out. Figure 7
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shows the results. Refinement and inpainting have the most dra-

matic effect and leaving them out results in unconvincing composi-

tions. A lesser impactful step is our proportions estimation which

selects amongst a few discrete costumes (3 shapes). We observed

that an ill-matched character can be adjusted by the refinement

process. However, it can be observed that the visual quality of the

result is generally be�er when a costume with a similar body type

is selected. �e same holds for the method used to color correct

the inpainted image material. In many cases, histogram matching

is enough to get a convincing result, but the Poisson energy mini-

mization compensates for much more differences in color and can

make the difference in more extreme cases.

5.3 Limitations and Future Work

Trying with new characters, different than the astronauts, requires

fine tuning parameters in our optimization (sections 3.1 and 3.2).

We also observed that we could obtain be�er results for certain

people and poses by tweaking the parameters. Note that we kept

them fixed for our evaluation, but it could be interesting to classify

the optimization parameters based on the person’s picture. Addi-

tionally, Our method remains to be tested with children, who have

more variation in limb lengths, compared to adults. Finally, we

think that accommodating characters that have significantly differ-

ent or exaggerated limb proportions, such as a cartoon character

with tiny legs, would require changing the head position, and thus

revisiting our design.

Our inpainting requires scanning the area before hand, which

requires starting over when the environment changes. Also, we

inpaint using a projection transformation derived from a known

marker in the scene (the AR Poser poster), and in the event it

changes location, we must rescan the environment once again.

Finally, when masking the target person using Grabcut [36],

we don’t always get a segmentation that is precise enough. �is

results in body and background parts that are still visible a�er

the inpainting, or it may hide parts of the head. Additionally, the

approximated head model used to hide parts of the 3D costume

may not be accurate enough (see figure 5). �is could be improved

by using a more detailed, dynamically adjustable model, to estimate

the shape of the person.

6 CONCLUSION AND FUTUREWORK

We described a method to automatically fit a watertight costume

onto a person from a single RGB image, at arbitrary resolutions.

Our approach is based on a 3D matching type of approach, and

handles the inpainting problems associated with seamlessly com-

positing the costume onto the person. With this approach, we were

able to handle a variety of poses, and people of different propor-

tions. Our approach is not perfect and we provide examples of the

failure cases as well. We believe this will help future comparisons

and motivate improvements. For example, our approach could be

improved with more robust pose and shape estimation—perhaps

with deep learning—and eventually run in real-time. In the near fu-

ture, we would like to augment cartoon costumes with exaggerated

proportions, which cannot be handled by our current method.



VRCAI’18, December 2018, Tokyo C. Maurhofer et al.



AR Costumes: Automatically Augmenting Watertight

Costumes from a single RGB Image VRCAI’18, December 2018, Tokyo



VRCAI’18, December 2018, Tokyo C. Maurhofer et al.



AR Costumes: Automatically Augmenting Watertight

Costumes from a single RGB Image VRCAI’18, December 2018, Tokyo



VRCAI’18, December 2018, Tokyo C. Maurhofer et al.



AR Costumes: Automatically Augmenting Watertight

Costumes from a single RGB Image VRCAI’18, December 2018, Tokyo

REFERENCES
[1] Mykhaylo Andriluka, Leonid Pishchulin, Peter V. Gehler, and Bernt Schiele. 2014.

2D Human Pose Estimation: New Benchmark and State of the Art Analysis. 2014
IEEE Conference on Computer Vision and Pa�ern Recognition (2014), 3686–3693.

[2] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian �run, Jim
Rodgers, and James Davis. 2005. SCAPE: shape completion and animation of
people. ACM Trans. Graph. 24 (2005), 408–416.

[3] Istvan Barakonyi and Dieter Schmalstieg. 2006. Ubiquitous Animated Agents
for Augmented Reality. In Proceedings of the 5th IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR ’06). 145–154.

[4] Marcelo Bertalmı́o, Guillermo Sapiro, Vicent Caselles, and Coloma Ballester.
2000. Image inpainting. In Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’00). 417–424.

[5] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter V. Gehler, Javier
Romero, and Michael J. Black. 2016. Keep it SMPL: Automatic Estimation of 3D
Human Pose and Shape from a Single Image. In Computer Vision (ECCV 2016).
561–578.

[6] G. Bradski. 2000. �e OpenCV Library. Dr. Dobb’s Journal of So�ware Tools
(2000).

[7] Koen Buys, Cedric Cagniart, Anatoly Baksheev, Tinne De Laet, Joris De Schu�er,
and Caroline Pantofaru. 2014. An adaptable system for RGB-D based human body
detection and pose estimation. J. Visual Communication and Image Representation
25 (2014), 39–52.

[8] Dan A. Calian, Lalonde Jean-Francois, Paulo Gotardo, Tomas Simon, Ma�hews
Iain, and Kenny Mitchell. 2018. From Faces to Outdoor Light Probes. In Euro-
graphics.

[9] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime Multi-
person 2D Pose Estimation Using Part Affinity Fields. 2017 IEEE Conference on
Computer Vision and Pa�ern Recognition (CVPR) (2017), 1302–1310.

[10] Ching-Hang Chen and Deva Ramanan. 2017. 3D Human Pose Estimation =
2D Pose Estimation + Matching. 2017 IEEE Conference on Computer Vision and
Pa�ern Recognition (CVPR) (2017), 5759–5767.

[11] Gokcen Cimen, Christoph Maurhofer, Robert W. Sumner, and Martin Guay. 2018.
AR Poser: Automatically Augmenting Mobile Pictures with Digital Avatars Imi-
tating Poses. 12th International Conference on Computer Graphics, Visualization,
Computer Vision and Image Processing (2018).

[12] Gokcen Cimen, Ye Yuan, Robert Sumner, Stelian Coros, and Martin Guay. 2018.
Interacting with Intelligent Characters in AR. International SERIES on Information
Systems and Management in Creative eMedia (CreMedia) 2017/2 (2018), 24–29.
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