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Abstract— In this paper, we present an automated learning
environment for developing control policies directly on the
hardware of a modular legged robot. This environment fa-
cilitates the reinforcement learning process by computing the
rewards using a vision-based tracking system and relocating the
robot to the initial position using a resetting mechanism. We
employ two state-of-the-art deep reinforcement learning (DRL)
algorithms, Trust Region Policy Optimization (TRPO) and
Deep Deterministic Policy Gradient (DDPG), to train neural
network policies for simple rowing and crawling motions.
Using the developed environment, we demonstrate both learning
algorithms can effectively learn policies for simple locomotion
skills on highly stochastic hardware and environments. We
further expedite learning by transferring policies learned on
a single legged configuration to multi-legged ones.

I. INTRODUCTION

Some creatures in nature can change their number of
limbs in various situations. In a recent study on harvestmen
[1], also known as “daddy longlegs”, researchers showed
that harvestmen voluntarily release legs during a predator
encounter and recover their locomotion capability of speed
and steering control after a short period of time. Even
without this ability of autotomy, most of creatures are able to
locomote after changing their body configurations, by means
of learning to adjust themselves. Motivated by this wonder of
nature, we implemented and investigated learning locomotion
skills of a robot hardware while varying its configuration.

The process of designing robot walking motions largely
relies on manual efforts of engineers who can discover
appropriate gaits for the given morphology from their prior
knowledge. Although experienced engineers can design sur-
prisingly effective gaits for a wide range of robots, it is
less practical for reconfigurable robots [2] which can have
a huge number of different morphologies. For example, our
modular legged robot, Snapbot [3], can be configured into
700 different forms by attaching three types of legs to one
or more of the six attachment terminals of the hexagonal
base unit. While some configurations, such as symmetric
quadrupeds, are easy to find appropriate motions, many
configurations are not intuitive to find the best gait especially
when they are highly asymmetric. Therefore, automated
design of motions is highly preferable when the robot can
be easily reconfigured into many different morphologies.

Recently, researchers have demonstrated sampling effi-
ciency of deep reinforcement learning (DRL) techniques on
various continuous control problems. A recent benchmark [4]
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Fig. 1. We implemented an automated framework for training a control
policy directly on hardware of a reconfigurable robot. (Figure) The robot
platform, Snapbot, in the learning environment. (Bottom Right) The vision
image for computing the reward.

extensively compares the performances of the state-of-the-
art DRL algorithms on many tasks including swimming,
hopping, walking, and running in simulation. In contrast,
deep learning on hardware has been investigated mostly for
manipulation tasks [5], [6] and rarely for legged motions. In
our experience, even a simple crawling task becomes much
more challenging on real hardware due to various unmodeled
or approximated dynamics, such as link deformation, joint
slackness, and contacts. These unexpected properties result
in highly asymmetric and stochastic dynamics, which are
difficult to simulate by simply inserting artificial Gaussian
noises into simulation.

Although DRL serves as an automated learning frame-
work, it might be still time consuming if we train all
controllers from scratch. In the worst case, learning algo-
rithms may not be able to find the optimal policies for
some complex configurations with many degrees of freedom.
A common strategy to alleviate this problem is to exploit
learned policies on simple configurations as prior knowledge
that can guide learning for more complex robots. Although
various advanced techniques for learning and transfer of
hierarchically represented policies have been proposed [7],
[8], we test the simple approach of initializing the policy
using previously learned parameters.

In this paper, we present an automated environment for
deep reinforcement learning of locomotion tasks consisting
of a vision tracker and a reseting mechanism. Using this en-
vironment, we apply two state-of-the-art learning algorithms:
Trust Region Policy Optimization (TRPO) [9] and Deep
Deterministic Policy Gradient (DDPG) [10] directly on the



hardware of a reconfigurable legged robot. As a preliminary
study, we simplify the problem by limiting the target motion
to rowing or crawling with up to three legs. First, we train
a neural network policy for crawling of a single-legged
configuration. Then we apply the policy for single-legged
locomotion to multi-legged configurations by initializing the
policy parameters with the learned policies. The experimental
results demonstrate that both algorithms are able to learn
effective control policies directly on hardware for three
different types of legs. The results also indicate that we can
further expedite learning by reusing the learned parameters
for more complex morphologies.

II. RELATED WORK

Reconfigurable robotic systems have recently drawn a
lot of attention as a paradigm for achieving more versatile
and resilient motions [11], [12]. For example, Romanishin
et al. [13] developed a self-reconfigurable cubic robot system
where each modular unit can move independently using
a self-contained flywheel mechanism. Kalouche et al. [2]
designed a legged robot that can be reconfigured with a set of
modules including series-elastic actuators, sensors, links, and
end-effectors, which is more similar to our modular robot.
These early studies have motivated various commercial mod-
ular robot products, such as [14], [15]. In addition, it is worth
mentioning the self-recovering algorithm of Bongard et al.
[16] when the robot faces unexpected damage on its leg.

There exists a large body of research devoted to finding
locomotion controllers for new robots and virtual creatures
in the fields of robotics, machine learning, and computer
animation. One of the most popular approaches is to optimize
time-discretized trajectories by minimizing target physical
costs (e.g. energy usage) while satisfying dynamics con-
straints. For instance, Wampler and his colleagues proposed
a space-time optimization technique [17] for generating
locomotion controllers for various creatures from a small
number of inputs and adapting locomotion styles to new
animals. The optimized trajectories can further be used to
guide search algorithms for learning complex behaviors,
especially for challenging control problems with complex
and discontinuous dynamics [18].

In recent years, various advances have been made on
deep reinforcement learning (DRL) algorithms to effectively
train complex high-dimensional control policies. Mnih et al.
[19] achieved human-level control on classic Atari games
by improving the performance of Deep Q-Network (DQN)
with two important techniques: experience replay and target
network. Lillicrap et al. [10] further extended DQN to
problems with high dimensional continuous state and action
spaces with the actor-critic approach and deterministic policy
gradient (DPG) [20]. Schulman et al. [9] proposed a learning
algorithm called Trust Region Policy Optimization (TRPO)
that guarantees near-monotonic improvement of control per-
formance under a few theoretic assumptions.

Although DRL has been successfully applied to simulated
environments, the learned control policies are likely to fail
on hardware due to discrepancy between the dynamics of

simulation and real worlds. To bridge the gap, researchers of-
ten applied model-learning algorithms that iteratively update
the simulation model by building a probabilistic transition
model from collected data samples to make it closer to real
environment [21], [22]. Another approach is to directly train
policies on the target hardware without using simulation
at all. Due to many practical reasons, this approach has
been first examined on manipulation tasks rather than legged
locomotion. For instance, a few researchers [5], [6] devel-
oped a camera-to-servo controller for robotic manipulators
by training a convolutional neural network that evaluates
the probability of successful grasp. For robots with floating
bases, Yamaguchi et al. [23] trained crawling motions on a
real spider robot using Q-learning with discretized actions.
Asada et al. [24] accelerated Q-learning on hardware of a
mobile robot by ordering input states from easier ones to dif-
ficult ones. Recently, Luck et al. [25] demonstrated sample-
efficient learning of the sand-swimming motion controller
for a sea-turtle robot where the policy is represented as a
linear combination of basis functions. In this paper, our goal
is to design a locomotion controller in the form of neural
networks, which is more commonly used in the literature of
deep reinforcement learning.

III. PROBLEM FORMULATION

In this section, we will describe the details of our control
problem in the following order: Section III-A describes
our robot and learning platform, Section III-B provides a
mathematical formulation of the problem, and Section III-C
presents the policy representation and learning algorithm.

A. Robot and Automated Learning Environment

Our robot can be reconfigured by attaching and detaching
various types of legs (Fig. 2) to the base unit with magnetic
mechanical coupling. The base unit has a hexagonal shape
where each face has a socket at the center for attaching
a limb and a triangular supporting structure at the bottom
for reducing the friction force from the ground. Although it
has an on-board microprocessor and battery (Fig. 2 top), we
tethered it to a desktop computer because the microprocessor
is not powerful enough to perform the learning computation,
and the battery cannot support the whole learning process
that usually takes a few hours. There exists three types
of legs that each leg has two to three Dynamixel XL-320
position controlled servos: a roll-pitch leg (Type A), a yaw-
pitch leg (Type B), and a roll-yaw-pitch leg (Type C). The
robot can identify the configuration in real time and select
appropriate gaits depending on the configuration among
manually-designed rowing, crawling, and walking gaits.

We set up an autonomous learning environment with
a vision-based tracking system and a resetting device for
bringing the robot back to the initial position (Fig. 1 and
Fig. 3). The vision system is implemented using a consumer-
grade web camera mounted at a height of approximately
90 cm (Fig. 3). It tracks two visual feature points (green
and red) on the base unit to reconstruct the global position
and orientation of the robot.



Fig. 2. (Top) Standalone Snapbot and its legs. It has a microcontroller
and a battery in the base unit. (Bottom) The base unit and three types of
modular legs.

Fig. 3. The autonomous learning environment with a resetting device.

Resetting is an important functionality for the fully auto-
mated learning environment. We implement it using a simple
one-DoF lever mechanism that can pull the robot back to
its original position. The resetting lever is 25 cm long and
connected to two points on the robot’s base unit via two
1.5 m-long cables. We placed rubber bands between the
cables and the lever to allow a little bit of slackness. At
the beginning, the lever is at its rest pose which provides
approximately 30 cm by 40 cm of free space to the robot.
When the vision system detects the robot being out of the
boundary, it pulls the robot back to the designated initial
position by rotating 45◦ degrees and gets back to the rest
pose.

B. Partially Observable Markov Decision Process

We formulate the control problem as a Partially Observ-
able Markov Decision Process (POMDP) to illustrate the
decision making problem with unknown state variables. For-
mally, a POMDP is described by a tuple (S,A, p, r,Ω, q, γ)
where each term respectively denotes the set of states, the
set of actions, the probabilistic transition function, the reward
function, the set of observation, the probabilistic observation
function, and the discount factor.

The state s ∈ S is defined as a three dimensional vector
with the the global position (pt = [xt, yt]

T ), and orientation
(θt) of the base unit in the horizontal plane, which are
sampled at 5 Hz. The action a ∈ A is defined as the target
servo position q̄, where the control loop runs at 30 Hz.
The stochastic transition dynamics function p(st+∆t|st,at)
is intrinsically determined by the dynamics of the real robot
and environment. Note that our definition of the state vector
is a small subset of the robot’s real state variables selected
for calculating the reward. The real system has many more
unmodeled state variables such as momenta, slackness of
joints, current levels, cables, unevenness of the terrain, and
so on.

The reward function r(st,at) is a very important term
that governs the behavior of learning. Our reward function
consists of three terms: travel distance, direction, and effort.
The travel distance term is the main objective that describes
the travel distance in a single gait cycle, which is defined as

rtr(st,at) = k(t)
(
(pt − p0) · d(θ0)

)
(1)

where d(θ) returns the direction vector from the orientation
θ. The p0 and θ0 are the position and direction at the
beginning of the cycle. Simply using the distance results in
discontinuous reward because the travel distance can be only
measured at the end of a cycle. To smooth the landscape
of the reward function, we introduce a scaling parameter
k(t) that returns 10.0 if the t is at the end of the gait cycle
(2 seconds, 0.5 Hz) and returns 1.0 otherwise. The direction
term measures the closeness to the original heading direction
as

rdir(st,at) = d(θt) · d(θ0). (2)

Finally, the effort term is defined as:

reff (st,at) = −|at − qt|2 (3)
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Fig. 4. To speed up learning, we initialize the neural network for the multi-legged configuration with a copy of the learned network for the single-legged
configuration, duplicating the output neurons and their weights as necessary.

to penalize the uneven motion trajectories where qt is the
current servo positions. The reward function is a weighted
sum of the three terms:

r(st,at) = w1r
tr(st,at)

+ w2r
dir(st,at) + w3r

eff (st,at) (4)

where we use the constant weights w1 = 0.1, w2 = 0.01,
w3 = 0.01 for all experiments.

Because we aim for finding a periodic open-loop motion,
the only observable variable is the phase variable t. Although
this single variable is sufficient to learn the effective gaits,
we can further accelerate learning by providing a binary
encoding of the phase variable to distinguish the sub-phases
that is inspired by the work of Peng et al. [8]. Φi(t) ∈ {0, 1}
is 1 if and only if t is in its sub-phase interval, e.g. Φ1(t)
is 1 if 0 ≤ t < 0.25. The probabilistic observation function
q simply returns the corresponding time observation at the
queried moment. In our experiments, the binary encoding
accelerates learning two to four times compared to the case
when we only provide the phase t. Finally, we simply set
the discount factor γ as 1.

C. Policy Representation and Learning Algorithms

A policy π : ot → at is a stochastic function that finds
the optimal actions for the given observation at time t. The
policy is represented as a neural network that has two fully
connected hidden layers with 16 tanh activated neurons per
each layer, which results in 388 parameters in total for a
two DoFs configuration. For TRPO that trains a stochastic
policy as input, we use the Normal distribution where its
mean is the output of the neural network and the covariance
is maintained with an additional set of parameters.

Once the policy is trained for a single leg morphology, we
may be able to expedite the learning process by transferring
the knowledge to multi-legged configurations. By assuming
all the legs have the same joint configuration, we can initial-
ize a new policy for multi-legged locomotion by duplicating
output neurons and corresponding connections (Fig. 4). This
initialization provides a good starting policy that is already
able to move forward. For stochastic policies, we reset the
covariance parameters to 0.3 for encouraging exploration.
Algorithm 1: Trusted Region Policy Optimization.
TRPO [9] is an on-policy batch learning algorithm for

solving large scale nonlinear control problems, which the-
oretically guarantees monotonic improvement of the reward.
For each iteration, it roll-outs several trajectories using a
probabilistic control policy and collects data samples on the
advantage that is the difference between the return and the
baseline. Then it carefully updates the policy parameters
by solving an optimization problem with a constraint on
the Kullback-Leibler divergence between the new and old
policies to stay within the trust region that does not decrease
the expected rewards. For more details, please refer to the
original paper [9].

Some researchers reported that TRPO can be less data
efficient [10] or shows early convergence of the policy
network [26] for some scenarios. It might be because TRPO
does not explicitly learn a critic network, or the constraint on
a KL divergence does not allow large updates of the policy.
However, its near-monotonic updating behavior provides us a
couple of preferable properties when we apply the algorithm
to real robots. First, it is able to near-monotonically increase
the accumulated reward without falling into local minima.
This property is very important for our problem because
many policies are not able to move the robot at all in any
directions, which results in a large basin of attraction for
bad local minima. In addition, the algorithm samples new
trajectories only in the neighborhood of the trajectories of the
previous iteration. Therefore, it is easier to stop or roll back
learning when we observe bad motions at the development
stage.
Algorithm 2: Deep Deterministic Policy Gradient.
DDPG [10] is an actor-critic approach based on the deter-
ministic policy gradient proposed by Silver et al. [20]. Unlike
batch learning algorithms, it continuously updates the policy
parameters while exploring the input environments. It can be
also considered as an extension of Deep Q Network (DQN)
algorithm of Mnih et al. [19] to support high-dimensional
continuous action spaces. The authors demonstrated that
DDPG can efficiently learn competitive policies on various
control problems in simulated environments. We refer [10]
for a more detailed description of the algorithm.

IV. EXPERIMENTAL RESULTS

We run all the learning and control codes on a single core
of 3.40GHz Intel i7 processor. For both learning algorithms,
we use the implementations in RLLAB [4]. The learning
environment (called “gym” in RLLAB) is implemented with



Fig. 5. (Top) The motion with one Type A leg. (Middle) The motion with one Type B leg. (Bottom) The motion with two Type B legs.

Dynamixel SDK for controlling servo motors and OpenCV
for tracking the robot. A single learning process takes
approximately three hours to run 60 iterations where each
iteration evaluates 32 trajectories. For TRPO, we set the
batch size to 320 (32 gait cycles) and the step size to 0.05.
For DDPG, we used an epoch length of 320 (32 gait cycles),
a mini-batch size of 32, and a learning rate of 10−3 and 10−4

for the actor and critic respectively.
In this section, we investigate the following research

questions:
• Can the state-of-the-art DRL algorithms directly train a

policy on hardware?
• Can we expedite learning by transferring policies to

complex scenarios?

A. Learning of One-legged Locomotion

We first train policies for one-legged locomotion, which
results in motions similar to rowing or crawling. The results
of learning for all three types of legs are presented in
Fig. 6. Because the target environment is highly stochastic
and learning curves vary a lot, we plot all three trials rather
than presenting the average and median per iterations. In
general, both TRPO and DDPG are able to successfully
train policies directly on hardware, which often outperform
manually designed motion gaits. For instance, the maximum
reward for the type A leg was 60.3, which is greater than the
reward of a manually designed gait 34.8. We also observe
some unexpected locomotion strategies. For instance, one of
the policies for the Type A leg propels itself only using the
pitch joint without the roll joint, while another policy for the
Type B leg swings multiple times per one cycle. Please refer
to Fig. 5 and the supplementary video for the motions of the
learned policies.

We also observe differences between TRPO and DDPG on
the three problems. First, TRPO robustly learns all policies
with near-monotonic improvement on the cumulative reward

Fig. 6. Learning curves for single-legged locomotion with three types of
legs (three trials per leg type). (Top) The Type A leg with roll-pitch joints.
(Middle) The Type B leg with yaw-pitch joints. (Bottom) The Type C leg
with roll-yaw-pitch joints.



Fig. 7. Learning curves of multi-legged locomotion. (Top) Comparison
between learning with and without transferred initial policy parameters.
(Bottom) Comparison between two and three Type B legs.

as its original purpose. However, its local improvement
scheme sometimes prevents it from finding the global op-
timal policies, as we can observe the different final rewards
in the case of the type B leg. On the other hand, DDPG is
very sample efficient for the Type B leg as shown by the
quick learning of effective policies. However, DDPG often
falls into local minima and takes long time to escape, such
seen in the learning curves for the type A leg. We believe
that the roll joint in the type A leg increases the difficulty of
the problem because the pitch joint cannot touch the ground
at the maximum roll angle.

B. Learning of Multi-legged Locomotion

We also tested the learning framework on multi-legged
locomotion with up to three legs. The first task is crawling
with the two Type B legs. The top plot in Fig. 7 compares
the learning curves for the two algorithms with and without
using the transferred policy parameters (Section III-C). As
we expected, the learned policy serves as a good initial
solution: both algorithms achieve better rewards within the
same number of iterations. Interestingly, TRPO with the
transferred parameters learns to swing its legs three times
per cycle, which was the fastest gait we observed (Fig. 5).
For one trial of DDPG, we terminated learning at the 35th

iteration because the robot started to flip itself upside down
and the current version of the reset device cannot flip it back
over. We also tried to train locomotion with the three Type
B legs (Fig. 7, Bottom), but the resulting motion does not
use the middle leg effectively.

V. DISCUSSION AND FUTURE WORK

In this paper, we implemented an automated learning envi-
ronment and applied two state-of-the-art learning algorithms,
TRPO and DDPG, for finding crawling gaits of modular
legged robot hardware. We implemented a fully automated
learning environment that computes the reward from a
consumer-grade web camera and resets the robot position
using a simple lever mechanism. The experimental results
indicated that both TRPO and DDPG can successfully train
policies on hardware within three hours. In general, TRPO
near-monotonically increases the reward while convergence
rates of DDPG vary a lot with respect to the problem. We
also demonstrated that learning of multi-legged locomotion
can be accelerated by transferring policy parameters learned
on a single-legged configuration.

Due to the limited sensing capability, we only conducted
experiments on simple open-loop crawling motions. It will be
interesting to consider more complex controllers and reward-
ing terms to achieve more complex behaviors. For instance,
we can implement an IMU-based feedback controller to train
walking or running motions. Alternatively, we can collect
the height of the robot using the depth camera and provide
a reward term that encourages the transition from crawling
to walking.

Although we demonstrated the reuse of policies by ini-
tializing starting policies with the parameters learned for
more simple configurations, our investigation on transfer is
limited to the similar motions with the same type of legs.
One future work is to decompose the motion into hierarchi-
cal tasks with different levels of abstraction, such as end-
effector manipulation, task-space locomotion, and high level
decision. As reported in the work of [7] and [8], hierarchical
policy representation may allow more smooth knowledge
transfer between various morphologies, by directly replacing
the low-level controllers. However, we must be aware of
the possibility that artificial selection of policy hierarchy
may prevent the robot from utilizing its full capability by
excluding locomotion strategies that do not fit the hierarchy.

Both algorithms come with their own limitations: sample
inefficiency for TRPO and instability for DDPG. Most no-
tably, DDPG is not robust to noise in the data caused by,
for example, invalid contacts due to joint slackness or unex-
pected motions due to communication errors. For instance, a
small amount of noise in a good rowing motion can result in
a backward movement that receives a large negative reward.
Therefore, the learning algorithm for hardware should be less
vulnerable to noisy data to avoid degrading the quality of the
final policy.

The automated learning process sometimes generated un-
expected behaviors. In one instance, the motion included
flips to exploit a bug of the vision tracking system where
the robot location is miscalculated when the markers are
invisible. Although this behavior did not cause any damage
to the robot, unexpected behaviors can be very detrimental
especially for legged robots with higher center of mass
heights. Therefore, direct learning on hardware may require



conservative algorithms that can ensure safety rather than
being sample efficient.
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