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Abstract

We present a novel computational approach to optimizing the morphological design of robots. Our framework takes as
input a parameterized robot design as well as a motion plan consisting of trajectories for end-effectors and, optionally,
Jor its body. The algorithm optimizes the design parameters including link lengths and actuator placements whereas
concurrently adjusting motion parameters such as joint trajectories, actuator inputs, and contact forces. Our key insight
is that the complex relationship between design and motion parameters can be established via sensitivity analysis if the
robot’s movements are modeled as spatiotemporal solutions to an optimal control problem. This relationship between
form and function allows us to automatically optimize the robot design based on specifications expressed as a function of
actuator forces or trajectories. We evaluate our model by computationally optimizing four simulated robots that employ
linear actuators, four-bar linkages, or rotary servos. We further validate our framework by optimizing the design of two

small quadruped robots and testing their performances using hardware implementations.
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1. Introduction

In the not-so-distant future, a rich ecosystem of robots for
service, search and rescue, personal assistance, and edu-
cation has the potential to improve many aspects of our
lives. The process of creating new types of robots, however,
is notoriously challenging because their motor capabilities
are intimately related to their design. For this reason, cre-
ating new robots requires a great deal of experience, and
is a largely manual and time-consuming task. This tedious
and error-prone approach to creating robots is unfortunately
necessitated by the lack of formal models that can predict
the complex interactions between the design of a robot and
its ability to effectively serve its intended purpose.

Rather than relying on trial-and-error approaches, we
seek to develop a computational model with the predictive
power required to inform design decisions. To achieve this
goal, we must cstablish a relationship between the form
and function of robotic devices. To this end, we model
a robot’s movements as spatiotemporal solutions to opti-
mal control problems. The sensitivities of these optimal
solutions enable a guided exploration on the manifold that
relates a robot’s morphological design parameters and its
motor capabilities (Figure 1).

We test the effectiveness of our approach by optimiz-
ing the designs of various robotic devices, including a

manipulator with linear actuators, a manipulator with four-
bar linkages, a quadruped with lincar actuators, and a
quadruped with rotary servos, with the goal of minimiz-
ing the actuator forces required to realize the desired
motions. Further, we fabricated two physical prototypes of
small quadruped robots using 3D printing and validate the
simulation results.

2. Related work

Designing hardware and motion of robots is a complex
task that needs to consider numerous parameters and non-
intuitive relationships between them. To obtain a good ini-
tial guess for this challenging problem, robot designers
often get inspiration from creatures in nature. Under this
paradigm, many robots have been successfully designed and
built by mimicking morphology and locomotion of real-
life animals including salamanders (Crespi ct al., 2013),
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Fig. 1. A set of motion and task constraints implicitly define a manifold of valid designs.

cheetahs (Seok et al., 2014)), kangaroos (Graichen et al.,
2015), and chimpanzees (Kuehn et al., 2014). Although
these animals can be good sources of inspiration, design-
ing robots is still a time-consuming process that requires
repetitive design revisions and performance tests. In this
work, we focus on providing an intuitive design frame-
work that allows editing with shorter cycles by identifying
relationships between design parameters and performance
criteria.

To overcome the complex problem of designing robots,
there exists prior work to automate the design by optimiz-
ing morphology for a given performance criterion, such
as locomotion speed or energy consumption. In particular,
evolutionary algorithms (EA), such as genetic algorithm
(GA) or simulated annealing (SA), have received consid-
erable attention for solving design optimization due to its
capability to handle discrete changes. This approach has
been successfully deployed to find the optimal morphol-
ogy for various types of robots, including virtual creatures
(Sims, 1994), manipulators (Leger, 1999), tensegrity robots
(Lipson and Pollack, 2000), and soft robots (Cheney et al.,
2013). Recently, Baykal and Alterovitz (2017) proposed
a sampling-based approach for optimizing the kinematic
design of piecewise cylindrical robots in cluttered environ-
ments. Although EA have been proven to be simple yet
effective for exploring various designs, the key limitations
are limited guarantees on optimality of the final design and
difficulty in reproducing the results on subscquent trials.
Instead of relying on stochastic operations, our framework
directly identifies the required changes for optimizing the
performance of the robot.

In the robotics and computer graphics community, a
number of researchers take the approach of automating the
design process by optimizing the morphology of a robot for

a given task. In general, this approach solves a large opti-
mization problem that minimizes a performance criterion
while satisfying kinematic and dynamic constraints. The
task-based design optimization has been widely applied
to manipulators (Ceccarelli and Lanni, 2004; Paredis and
Khosla, 1991; Van Henten et al., 2009), parallel manip-
ulators (Collard et al., 2005; Kim and Ryu, 2003; Yun
and Li, 2011), and cable-driven mechanisms (Li et al.,
2017; Megaro ct al., 2017) for reaching desired workspace
and avoiding joint singularities. However, only few studies
exist on under-actuated robots, such as pipe-cleaning robots
(Jung et al., 2011), stair-climbing mobile robots (Kim et al.,
2012), virtual creatures (Geijtenbeek et al., 2013; Wampler
and Popovi¢, 2009), or quadrupeds (Ha et al., 2016) owing
to the complexity of the required models.

Such monolithic design optimization is often not easy
to use in practice. One of the main problems is that this
approach usually takes long time (a few hours for simple
robots) to optimize the design. Furthermore, as the first
run of optimization rarely results in a satisfactory design:
the user needs to repeat the optimization many times while
adjusting the objective function. Instead, our framework
provides an iterative editing method that the user can pro-
vide the change directions any time during the optimization
process.

Two of the six examples used in this paper utilize lin-
ear actuators, motivated by the recent robots empowered by
hydraulic or electronic linear actuators to realize large joint
torques in manipulators,’' humanoids,? and quadrupeds
(Rongetal., 2012; Semini et al., 201 1).3 One of the difficul-
ties of using linear actuators is finding their optimal layout
to realize large moment arms while achieving the necessary
range of motion, which is not intuitive due to nonlinear rela-
tionships between joint positions and forces. The examples
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demonstrate that our framework can effectively handle lin-
ear actuators by including their attachment locations as part
of the design parameters.

3. Background: implicit function theorem

The implicit function theorem (Jittorntrum, 1978) is a tool
for converting an implicitly defined relationship between
two sets of variables to an explicit function. Let the follow-
ing implicit function f : R"* — R™ be a relationship
between two sets of variables,y € R" and z € R™:
f(y,z)=0 (1)
For the given implicit relationships f, our goal is to convert
it into an explicit function g : Ay — Az within a small disk
around the current point, (yo,Zo) (Figure 2). The Jacobian
Df describes linearized changes around the given point as
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where yy,...,y, and zy, .. ., z, are entries of y and z. When
we change yo and zy by Ay and Az, the change of the func-
tion Af should be zero to remain on the manifold defined
by f:
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If there are no additional inequality constraints, the explicit
function g can be obtained by simply taking the inverse of
the Jacobian matrix with respect to z:
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For the general k-dimensional function f R
RE, we could take the Moore—Penrose pscudoinverse or
employ numerical optimization to obtain Az that satisfies
Equation (3) as we describe in the next section.

4. Algorithm

When a robot executes a motion, the robot and motion can
be described by a set of design and motion parameters. Our
goal here is to develop a tool that can efficiently navigate
through the implicitly defined manifold of valid parameters.
In this section, we first describe how the implicit function
theorem can be applied to interactive robot design, followed
by the details of our problem formulation. We then present
the details on how to formulate the relationships between
various parameters as a linear system using the implicit
function theorem, and how to efficiently solve it using the
null space of the linear system.

(Yo, 20)

g(y)=z

A
Y

f(y,z)=0

Y

Fig. 2. The implicit function theorem converts an implicit relation
f into an explicit function g at the given point (v, zq).

4.1. Overview

A robot design can be described by a set of parameters
such as link lengths and actuator attachment points. A robot
motion, on the other hand, can be described by joint posi-
tions, joint torques, and contact forces at every time frame.
These variables collectively form a set of design and motion
parameters that defines a robot design and its motion.

The design and motion parameters must satisfy various
constraints such as the equation of motion. In some cases,
the desired motion may be given as end-effector trajecto-
ries that provide additional constraints on the end-effector
positions at every frame.

These constraints form the implicitly defined manifold
of valid robot designs and their corresponding motions. We
apply the implicit function theorem to derive the relation-
ships among the design and motion parameters. By group-
ing the parameters in various combinations into y and z,
we can compute how to change a subset of parameters in
response to the changes in the other parameters while main-
taining the constraints. For example, if we form y by all
the design parameters and include all motion parameters
in z, we can compute how the motion should be changed
according to a design change.

We can even perform certain types of optimization using
this technique (Figure 3). Consider choosing the maximum
force of a specific actuator as the only element of'y, and giv-
ing a small negative value as Ay. In this case, Equation (4)
gives how to concurrently change the design and motion to
reduce the peak force. Alternatively, we can choose to fix
the design and change only the motion by adding the design
parameters to y and specifying zero changes for them.

This formulation provides an entirely new approach to
the robot design problem: the user can choose the sub-
set of parameters and their change directions, and the
algorithm will automatically compute how the other param-
eters should be changed for the system to remain on the
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Fig. 3. Overview of the proposed framework. Our algorithm co-optimizes the design and motion parameters by relating them with the

implicit function theorem.

constraint manifold. In contrast to traditional numerical
optimization, the user no longer has to formulate the cost
function for each set of optimization variables, or indirectly
manipulate the optimization result by adjusting the weights
in the cost function.

4.2. Problem description

4.2.1. Parameters. In our problem, we have two sets of
parameters: design parameters and motion parameters.
Design parameters, such as link lengths 1 and attachment
points of linear actuators &, define the robot’s morphology
that is constant over time. On the other hand, motion param-
eters describe the state and control signals of the motion at
cach of the N sample frames. Motion parameters include
joint positions q;, actuator forces t;, and contact forces at
the M end-effectors f;; (i = 1,2,...,N, j = 1,2,...,M).
We assume that only the end-effectors make contact with
the environment. Finally, we introduced the motion plan
scale parameters k = [k, ky, k-]" that change the scale of
the given motion plan. For instance, the optimization can
clongate the step length of a quadruped robot by increasing
k in the forward direction.

By collecting all the design and motion parameters,
we define the parameter vector x as x ', at,
Qi QT Tyt f k] We denote the
size of x by P.

4.2.2. Constraints. A sct of design and motion parame-
ters is valid only when it satisfies the task and physics
constraints.

The first constraint we consider is that the motion of the
robot must satisfy the equation of motion. We therefore
define the objective function associated with the equation
of motion as

M
wi(x)= [M; + ¢ —Rr; — > Jf7 =0 (5

J

i
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Fig. 4. Four-bar linkage example.

where M is the joint-space inertia matrix, ¢ is the sum
of gravitational, centrifugal, and Coriolis forces, R is a
moment arm matrix that maps actuator forces to joint
torques, and J; is a Jacobian matrix of the position of the jth
end-effector with respect to the joint positions. For brevity
of representation, we omit the dependency of matrices: for
instance, the moment arm matrix R depends on 1, &, and ;.
The velocity ; and acceleration (; are computed from finite
differences of q;. When the robot has an unactuated float-
ing base, we set the corresponding values of 7; to zero and
remove them from the free variables. Because we describe
the dynamics of the robot using the full equations of motion,
we do not have any specific assumptions such as quasi-static
stability.

The moment arm matrix R is introduced to uniformly
represent various actuation mechanisms including rotary
servos, four-bar linkages, and linear actuators. When joint
k is actuated by a rotary servo directly located at the joint
axis, the (k, k) element of R, Ry, is 1. When joint £ is
driven by a four-bar linkage as shown in Figure 4 where
the black joint is actuated and white ones are passive, we
simplify the formulation by dividing the mechanism into
the main chain (thick gray lines) and supporting structure
(thin dashed lines). We treat the supporting structure as a
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pure torque source and ignore its mass and inertia. Note
that some linkage structures, such as the Jansen’s linkage,
do not have this assumption. In this case, we can represent
its dynamics using either the Lagrangian approach (equa-
tions of motions) or the Eulerian approach (body dynamics
+ constraints).

In Equation (5), the active joint torque t;/; is included in
T; whereas the equivalent main joint anglé qk,; 1s used in
q;. From now, we omit the frame index i for brevity. The
velocities of the main and active joints are related by the
ratio Ay, as follows:

9 = h(qr) g (6)
The principle of virtual work yields
kg = T84} (7

In the four-bar linkage case, therefore, we have Ry =
hi(qyr). For linear actuators, Ry is

Rie =(rg x )" ay (8)

where sy, is the actuator force direction, aj is the direction
of the joint axis, and ry is a vector pointing from a point on
the joint axis to a point on the line of action of the actuator
force.

Many tasks can be described by a set of desired end-
effector trajectories and its objective function can be
defined as

Wf/E( x) = le;(1,q)) —éi,/‘|2 =0 9)

where e;( ) evaluates the jth end-effector position and e;; is
the desired position of the jth end-effector at the ith frame.
When the robot has linear actuators or four bar linkages,
the morphology of the robot has closed kinematic loops. We
enforce jth kinematic loop constraint at ith frame as follows:

WEiilosed( X) = |p/:]( 1,q,) _pfj( 1, q;) |2 =0 (10)

where this constraint indicates that positions of two points
p* and p? should be matched.

In the case of cyclic motions such as locomotion, we
place an additional constraint that the joint positions for the
first and last frames must be identical:

wP(x) = |qi —qv|* =0 (11)

In addition to the equality constraints that represent the
implicit relationships, we need to define a set of inequal-
ity constraints to limit the range of some of the parameters
and enforce contact forces to stay within a friction cone.
For brevity, we will omit the details of these straightforward
inequality constraints.

For robots with rotary actuators, the lower and upper lim-
its for joint positions can be simply defined as bounds on the
elements of q;. If the robot includes linear actuators, their
joint positions are limited by the stroke ranges. Therefore,

we place the following constraint on the positions of each
of the K actuators as

1P <lp(x)<l

(12)

where lff and /" are the lower and upper bounds of the kth
linear actuator, and /; 4(*) computes its position at the ith
frame.

4.3. Formulation of linear system

A change in any subset of parameters will likely cause
violation of some constraints, and such violation must be
corrected by changing the other parameters. We apply the
implicit function theorem to obtain the linear relationships
between the parameters to constrain the parameter changes
to stay on the manifold. In the following, we refer to the
previously defined H constraints as wy, ..., wy, and their
gradients with respect to x as Cy, ..., Cy.

Defining f =(w; ... wy)" may seem to be the most nat-
ural choice to apply the implicit function theorem. Unfor-
tunately, we cannot directly use the objective functions
because their gradients are always zero for all parameters
on the manifold due to their quadratic forms. Instead, we
use the gradient C; of the constraints as the implicit rela-
tionships, where the Jacobian of gradients (i.c. Hessian of
W;) must be equal to zero.

Because the change of the gradient function AC; should
be zero, we can build a linear system of Ax as

AC; = D;Ax = 0 (13)

where D; is the Jacobian of the gradient [§C;/5x]. We apply
finite difference to compute D; because it is impossible or
very difficult to analytically compute them. To improve the
accuracy, however, we use analytical gradients for comput-
ing C; with respect to some of the parameters as detailed in
Section 4.6.1.

The constraints on linear actuator positions (Equa-
tion (12)) are also converted into a linear system of Ax
using the chain rule:

I < I+ LigAx < I} (14)

where lgk is the initial actuator position /; x( Xo) and Ly is the
Jacobian matrix 8/; 4 /8x.

By collecting all equality and inequality constraints, the
linear system is formulated as follows:

AIAX = b1

15
A, AX > by ( )
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where

[8C,/sx1 8C,/6xs 5C, /5xp
A= : (16)
| 5Ch/ox 8Ck/6x 5Cy /8xp
b, =[0 0]

[ Ly

=L,

(17)

A = (18)

| —Lnvx

b= [10 =, (=) - (= B0] 19)
Note that the matrices of the formulated linear system are
very sparse, because the motion parameters only affect the
constraints on the corresponding frames.

The final component of the system is the user input speci-
fying the desired changes of a subset of parameters Ay. We
denote the remaining unknown parameters by Az, which
we shall determine such that the constraints are maintained
after Ay is applied. Without losing generality, we can divide
the equality and inequality constraints of Equation (15) as

AlyAS’ + AleZ = b1

’ 20)
Ay Ay + Ay.Az > b,

4.4. Optimization

Instead of using the pseudoinverse as in Equation (4), we
compute z by applying numerical optimization because
(1) we also have inequality constraints and (2) there may
exist multiple solutions or there may be no exact solution,
depending on the size of y. The optimization problem can
be derived from Equation (20) as

min Az'SAz
Az

s.t. AIZAZ = bl - AlyAy
A Az > by — Ay Ay

21

where S is a positive definite, diagonal weight matrix, where
we use 0.01 for actuator forces 7, 10.0 for contact forces f,
and 1.0 for others.

Although this is a standard quadratic programming prob-
lem, it is numerically difficult to solve due to a large number
of constraints. We therefore represent the feasible solution
space with respect to the linear constraints using the null
space of the coefficient matrix A :

Az = Azyp + Nu (22)

where Azg = Af.(b; — A},¥) and N represents the null
space of Aj,. Note that both ATZ and N can be effi-
ciently computed from one singular value decomposition.
Equation (21) can now be reduced into

min (Azy + Nu)! S( Azy + Nu)
u (23)
st Ax(Azy+ Nu)> by — Ay, Ay

Algorithm 1 Design Optimization Algorithm

Require: Initial design and motion parameters x,
1: X < Xp.
2: while not reach the maximum iteration do
3:  determine Ay by selecting the desired changes.
4 formulate A, b; from the equality constraints.
5:  formulate A,, b, from the inequality constraints.
6:  obtain Az by solving Equation (21).
7. x < x+(AyTAZDT
8:  correct numerical errors (Section 4.6.2)
9:  calculate £ using Equation (24).

10 ifE > & then

11: break.

12:  end if

13 x* < x.

14: end while

15: return x*

which can be solved much more efficiently than the original
optimization problem. Once we obtain the solution u*, we
can compute the solution of the original problem (21) Az*
using Equation (22).

The formulated optimization is solved using sequential
quadratic programming. In future, we consider to improve
the performance of the solver by exploiting sparsity of the
matrix A; (Saad, 2003).

4.5. Summary

Algorithm 1 summarizes the optimization algorithm
described in this section. It takes the initial parameters x,
as input, and finds the optimal parameters x* that realizes
the desired change and also maintain the design and motion
on the constraint manifold. In Algorithm 1, £ represents the
sum of the objective functions:

H
=Y wi(x) (24)

A non-zero £ implies violation of constraints due to
numerical errors caused by linear approximation. At each
iteration, we attempt to correct this error as described in
Section 4.6.2. We run the optimization until it reaches the
maximum iteration (1,000 in our implementation), or the
error & is greater than a threshold £ (107°).

In line 3 of Algorithm 1, we could also let the user
interactively choose Ay as demonstrated in Section 5.1.
This version of the algorithm provides an intuitive interface
for optimizing the design of a robot by specifying desired
changes to any of the design or motion parameters. For
example, the user could choose to reduce the maximum
torque, or adjust the link length depending on the design
requirements.
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4.6. Implementation note

4.6.1. Computation of gradients. 1t is desirable to calcu-
late the analytical gradient vector C; with respect to all
parameters. Unfortunately, most of the constraints are non-
linear and it is difficult to analytically calculate their gra-
dient with respect to some of the parameters, such as the
partial derivative of the Coriolis forces with respect to the
joint velocities. Instead, we only compute the analytical gra-
dients that can be easily derived. In our experience, this
compromise provides enough accuracy while keeping the
computational cost reasonable.
For instance, the gradient of end-effector constraints with
respect to the link lengths can be simply computed as
SwPE /81 = 3T (¢(1,q) —€) (25)
Similarly, the analytical gradients of the equation of motion
constraint can be easily calculated for the joint forces and
contact forces as

M
swFOM 5T = RT(M§; + ¢ — Rz, — » _JTfy))
J
SWEOM /st = (26)
M
[ Iu]"(M§; + ¢ — Re; — Y i)
J

4.6.2. Correction of numerical errors. Because we apply
linear approximation to the nonlinear constraints, numeri-
cal errors will accumulate and eventually lead to physically
invalid solutions. Our framework prevents this numerical
deviation by rec-optimizing only the motion parameter for
the equality constraints.

First, we optimize the joint angles considering only the
end-effector constraints (Equation (9)):

q; = argmin w®t

q; (27)

We then optimize the actuator forces and contact forces to
satisfy the equation of motion (Equation (5)):

.,fiy = argmin whEOM
LR RPN 1 V4

T fi,l, .. (28)

Note that the design parameters are not changed in the error
correction process.

5. Experiments

In this section, we discuss the simulation and hardware
experiments for validating the proposed design optimiza-
tion algorithm. We tested three sets of examples: simula-
tion of linearly actuated manipulators, simulation of linearly
actuated quadrupeds, and hardware of quadrupeds with off-
the-shelf rotary servos. The algorithm is implemented in
Python with the PyDART#* and SciPy library (Jones et al.,

The Original Design

I'he third actuator

The Optimized Design

The third nctuator

Fig. 5. Comparison of the original (top) and optimized (bottom)
manipulators. Note the larger moment arm for the third actuator in
the optimized manipulator.

2001) on Ubuntu Linux, and the computations are con-
ducted on a single core of 3.40 GHz Intel 17 processor. The
parameters for all problems are described in Table 1.

5.1. Simulation of manipulators with
linear actuators

We first show a proof of concept of our algorithm by opti-
mizing the design of a linearly actuated manipulator. First,
we provide an initial manipulator design with link lengths
of 20, 30, 30, and 20 cm. The manipulator has four degrees
of freedom fully actuated by four actuators, each of which
with 25 cm body length and 16 cm stroke. The actuators are
monoarticular with 5 cm moment arms except the second
biarticular actuator with a 15 cm moment arm. The attach-
ment points of actuators can be adjusted vertically, except
the points on the base link that can adjusted horizontally.
The input task is to move a 5 kg object along the target
trajectory that has the 60 cm maximum distance from the
base link. Note that the initial design is generated based
on simple rules rather than pre-tuned for any performance
index.

In this example, we demonstrate two editing modes:
force-driven mode for reducing the maximum actuator
force; and length-driven mode for adjusting the length of
the target link.

We begin with the force-driven editing mode, which pro-
vides an intuitive interface for editing the design such that
the maximum actuator force is reduced. At each iteration,
our algorithm selects the maximum force parameter dur-
ing the entire motion, and set the desired change as —1%
of its value. Using our algorithm, we are able to find the
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Table 1. The problem parameters.

Problem # Parameters # Expanded Nodes
Robot Actuation # Actuators # Frames Lengths Ac_tuator J oint Actuator Contact }’lan # Total Time per

Points Positions Forces Forces Scale Parameters Iteration
Manipulator Linear 4 7 4 8 28 28 0 0 68 0.8s
Four-bar arm Rotary 3 11 5 2 55 55 0 0 117 1.5s
Large quadruped Linear 16 13 8 16 208 208 156 0 596 40.2s
Small quadruped Rotary 14 13 5 N/A 182 182 120 0 489 32.1s
Tetrabot, rolling Rotary 16 8 3 N/A 176 128 81 3 391 43s
Tetrabot, walking Rotary 16 16 6 N/A 352 256 177 3 794 9.9s
Tetrabot, both Rotary 16 8 3 N/A 528 384 258 3 1,176 15.1s
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Fig. 6. Force profiles of the third actuator in three designs: the
initial design and motion (red), the initial design with optimized
motion (green), and the concurrently optimized design and motion
(blue). The concurrent optimization of the design and motion
parameters results in the most efficient actuator force profile.
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Fig. 7. Changes in link lengths and the maximum actuator force
the third actuator during the manipulator design optimization pro-
cess. The first half was edited in the force-driven mode to mini-
mize the maximum torque, whereas the second half was edited in
the length-driven mode for increasing the length of the first link.

optimal design that reduces the maximum actuator force
from 589 to 383 N, which happens at the third actua-
tor. The parameters of the resulting design are shown in
Table 2, and the visual comparison is provided in Figure 5.
In general, the algorithm increases the moment arm for the
third actuator by changing its attachment point, and adjusts
the second and fourth link lengths to secure the necessary
range of motion. Further increasing the moment arm of
the third actuator cannot maintain the range to perform the
entire desired motion, which triggers the break condition in
line 10 of Algorithm 1.

+—+ 4 Links ////
*—% 5 Links ~

Duration (s)
N W e

o

10 15 20
The number of time steps in the motion

Fig. 8. Average time duration for computing a single iteration of
Algorithm 1 with various numbers of links and discrete time steps.

In our experience, the optimization is not very sensitive
to the initial parameters. Optimization trials with different
initial layout parameters converge to solutions similar to
that shown in the bottom of Figure 5.

Our algorithm also allows optimization of the motion
parameters only, which gives another pair of design and
motion where the design is the same as the initial one
but the force profile is different. Figure 6 compares the
torque profile of the third actuator for the three pairs of
design and motion. Although optimizing only the motion
can also reduce the maximum torque, its final result (487 N)
is worse than the result of concurrent design and motion
optimization (382 N).

Let us consider the scenario where the user is not satisfied
with the proportion of the optimized design and is will-
ing to sacrifice the maximum force to increase the length
of the first link. The user can then start the length-driven
editing mode and set the desired change of the first link
length as +1 mm. Given the new input, the algorithm suc-
cessfully increases the link length while properly adjusting
other design and motion parameters as shown in the second
half of Figure 7. The maximum achievable length is 24 cm,
beyond which the range of motion becomes too small to
perform the desired motion. Our algorithm automatically
relocates the bottom attachment point of the second actua-
tor closer to the joint in order to obtain the required range
of motion. Please refer to Extension 1 for more details.

To demonstrate the scalability of the algorithm, we plot
the timing data for computing a single iteration of the algo-
rithm while varying the number of links in the manipula-
tor (design parameters) and the number of time steps in
the motion (motion parameters) in Figure 8. The result
indicates that the speed of the optimization is slightly
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Table 2. The results on manipulators with linear actuators.

. Actuator Maximum
Link Lengths (cm) Positions (cm) Force (N)
Design Link 1 Link 2 Link 3 Link 4 Link 2 Link 3 Manipulation
Initial 20.0 30.0 30.0 20.0 15.0 5.0 5.89 x 102
Motion Optimized 20.0 30.0 30.0 20.0 15.0 5.0 4.87 x 102
Design Optimized 19.7 24.4 29.5 249 14.5 8.3 3.83 x 102
Length Edited 24.0 24.4 29.1 24.9 10.8 83 4.80 x 102

The Original Design

Seva 1
274 Servoz

23
Sevo
zasl

The Optimized Design ’

"

Servo 1 5a
338 539N g 0o

a3

7

Fig. 9. Comparison of the original (top) and optimized (bottom)
linkage manipulators. Note that we differentiate the active and
passive joints by rendering the servos as green cylinders.
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Fig. 10. Torque profiles of the first servo in three designs: the
initial design and motion (red), the initial design with optimized
motion (green), and the concurrently optimized design and motion
(blue).

more dependent on the number of design variables while
showing near-linear relationship to the number of motion
parameters.

5.2. Simulation of manipulators with four-bar
linkages

A four-bar linkage is the simplest closed chain mecha-
nism. It consists of four rigid links that are connected in
a closed loop by four hinge joints. This simple one-degree-
of-freedom (1-DoF) mechanism is a great tool for generat-
ing complex end-effector trajectories and adjusting torque
ratios between input and output joints. However, it is hard
to find the proper link lengths due to nonlinear relationships
between design and motion parameters. In this section, we
demonstrate that the proposed framework can be used for
editing robotic systems with four-bar linkages.

As a proof of concept, we employ a planar 3-DoF robotic
arm with a four-bar linkage as the target platform. We man-
ually provide the initial design parameters of the robotic
arm and let the framework to co-optimize the design and
motion. The base link and end-effector are connected by
three links with 35, 30, and 20 cm lengths. In addition,
we create the four-bar mechanism at the shoulder joint by
attaching two 20 cm links to the base link and the upper
arm link. Therefore, the total number of design paramcters
for this robot arm is seven: five link length parameters, the
position of the passive joint on the first link, and the posi-
tion of the actuated servo on the base link. The input task is
to move the 1 kg object 60 cm horizontally with the 10 cm
sinusoidal height.

The objective of the optimization is to minimize the max-
imum servo torque, which can potentially allow the robot
to execute difficult tasks that are previously infeasible due
to torque limits. Similar to the previous experiment on
manipulators with linear actuators, we generate two pairs
of design and motion by optimizing motion parameters only
(motion optimization mode) and co-optimizing design and
motion parameters (design optimization mode).

The resulting design changes are illustrated in Table 3
and Figure 9. In our experiment, the design optimization
mode successfully reduces the maximum servo torque from
9.81 to 5.59 N that corresponds to 44% reduction (Fig-
ure 10). In particular, the algorithm increases the joint
velocity of the first servo by decreasing the length of the
first link (dark red in Figure 9) in the four-bar mechanism.
In addition, it also reduces the moment arm of the second
servo by shortening the distances between the end-effector
and the servo. However, the motion optimization mode was
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not very effective due to limited DoFs, which results in less
than 1% torque reduction. As demonstrated in the results,
co-optimization of design and motion achieves much better
performances than motion optimization. For more details,
please refer to Extension 2.

5.3. Simulation of large quadrupeds with linear
actuators

This set of examples involves a large-size quadruped robot
with linear actuators. The initial design of the quadruped
has 1.2 m body length and 0.95 m shoulder height at its rest
pose with a mass of approximately 90 kg. Each leg has a
4-DoF digitigrade configuration with four linear actuators.
Two biarticular actuators are attached to the hip joints, and
two monoarticular actuators are attached to the knee and
ankle joints. All the actuators have the same length (25 cm)
and stroke range (16 cm) as the actuators for the manip-
ulator example. The design parameters arc constrained to
be left-right symmetric during the optimization process.
We choose a manually created initial design and generate
the input base link and end-effector trajectories by solv-
ing space-time optimization using the technique described
in Megaro et al. (2015). We treat the motion of the floating
base as input.

The goal of this experiment is to optimize the initial
design and motion parameters for two different tasks: slow
walking with 0.15 m step length and fast walking with
1.0 m step length. In both cases, we optimize the design and
motion parameters such that the maximum actuator force is
reduced.

Our algorithm successfully derives different designs that
reduce the maximum torques by 48% and 40% for the
slow- and fast-walking tasks, respectively (Table 4). Fig-
ure 11 compares the optimized design and motion while
Figure 12 plots the force profile of the knee actuator that
requires the maximum force in the original design. Refer
to Extension 3 for the details of the metamorphosis pro-
cess. The most notable difference of the two optimized
designs is in their knees: the moment arm is increased in the
slow-walking quadruped while it is kept small in the fast-
walking optimized design to realize larger range of motion.
In addition, the algorithm clongated the rear thigh for the
slow-walking task, while increasing the length of the rear
hip for fast walking. For the slow-walking task, we have
expected straight-knee configuration similar to those of ele-
phants or rhinos, but the algorithm did not result in such
design because the enlargement of moment arm has larger
effect than the reduction of the joint torque.

We also cross-validate the optimal designs by re-
optimizing the motion parameters with fixed design param-
eters. As we expected, the fast-walking optimized requires
31% more maximum actuator forces than the slow-walking
optimized design due to larger moment arms at the knees.

The Optimized Design for Slow Walking

FLK FRK BLK BR
036N _g7aan -3@an VTSN
= -

Fig. 11. Comparison of the optimized linearly actuated
quadrupeds for slow (top) and fast (bottom) walking tasks. We
highlighted a few noticeable differences. In general, the design
for slow walking has larger moment arms than the design for fast

walking.
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Fig. 12. Force profiles of the back right knee in the slow-walking
optimized (top) and fast-walking optimized (bottom) designs.

On the other hand, the slow-walking optimized design can-
not execute the fast-walking task due to its limited range of
the motion.

5.4. Hardware of small quadrupeds with rotary
actuators

We also validate our algorithm in hardware by implement-
ing a small-size quadruped with off-the-shelf rotary actua-
tors and 3D printed links. The robot has 20 cm body length
and 24 cm shoulder height at its rest pose. Each leg has four
Dynamixel XM-430 W-210° servos that have 3.7 Nm stall
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Table 3. The results on manipulators with four-bar linkages.

Link Lengths (cm) Four bar Lengths (cm) Maximum Torque (Nm)
Design Link 1 Link 2 Link 3 Bar 1 Bar 2 Manipulation
Initial 35.0 30.0 15.0 20.0 20.0 9.81
Motion optimized 35.0 30.0 15.0 20.0 20.0 9.74
Design optimized 50.0 124 17.2 8.56 43.1 5.59

Table 4. The results on large quadrupeds with linear actuators.

Link Lengths (cm) Actuator Positions (cm) Maximum Force (N)
Desien Rear Rear Rear Rear Rear Rear Slow Fast
& hip thigh shin foot knee ankle walking walking
Initial 15.0 30.0 30.0 20.0 4.0 4.0 1.30 x 10 2.15 x 103
Slow walking 10.0 352 31.9 16.1 9.2 9.0 0.68 x 103 N/A
Fast walking 16.1 31.2 322 17.1 6.1 33 0.89 x 103 129 x 103

Torque (Nm)

o—o Initial
+—+ Optimized

Current (mA)

200 oo Initial
+—+ Optimized

2.5 3.0 3.5 4.0

-a0g.

2.0
Time (s)

Fig. 13. Comparison of the front right knee torques in simulation
(top) and on the fabricated hardware (bottom).

torque at 14.0 V, and each foot is fabricated as a rubber-
coated hemisphere. For testing purpose, we put four 500 g
weights on the top of the base link. We tether the robot to an
external computer and replay the motion plan without any
balance controller.

We manually choose an initial design of the quadruped
and optimize the design such that the maximum joint torque
is minimized. Once again, the initial motion plan is gener-
ated using the method described by Megaro et al. (2015).
Table 5 compares the initial and optimized parameters.
Because the initial design requires a maximum torque of
2.08 Nm at its front knees, the algorithm reduces the lengths
of the front leg links to create near singular configurations
(Extension 4). On the other hand, the algorithm applics
minor changes to the rear leg because their torque profiles
are predicted to be lower than the front legs. As a result,
the algorithm successfully reduces the maximum torque

Fig. 14. Comparison of the original (top) and optimized (bottom)
small quadrupeds with rotary actuators.

to 1.42 Nm, which is 32% less than the original value
(Figure 13).

For hardware validation, we 3D printed new links with
the optimized lengths and assembled a new quadruped (Fig-
ure 14 and Extension 4). After fabrication, we replayed the
new motion plan that is also concurrently optimized with
the design parameters. As the actuators do not have torque
sensors, we use the maximum current as the performance
criteria. Figure 13 shows the current profiles of two designs
at the front right knee for a single cycle of the motion.
We choose the cycle with a median peak value among
five trials. The maximum current is successfully reduced to
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Table 5. The results on small quadrupeds with rotary actuators.

Link Lengths (cm)

Maximum Torque

Desi Front Front Rear Rear Rear Simulation Hardware

csign thigh shin thigh shin feet torque (Nm) current (mA)
Initial 8.00 16.0 8.00 8.00 8.00 2.08 (7.66 & 0.37) x 102
Optimized 7.87 12.9 9.43 7.28 8.00 1.42 (5.3540.23) x 102

Shin Foot

Thigh

Fig. 15. A spherically symmetric quadruped robot, Tetrabot.
(Top) The zero pose of Tetrabot is similar to a tetrahedron. (Bot-
tom) Each leg has 4 DoFs including one yaw joint and three pitch
joints.

535 mA in the optimized design, which is 30% less than the
original maximum current (766 mA) and roughly matches
the reduction ratio in simulation. The predicted torque and
actual current profiles do not exactly match but show a large
positive Pearson’s correlation coefficient of 0.7.

5.5. Simulation of spherically symmetric
quadruped robots

Inspired by the work of Pai et al. (1995), we select the
next testing platform as a spherically-symmetric quadruped
robot. It is called Tetrabot because its shape resembles a
tetrahedron (Figure 15). The robot consists of a spheri-
cal body and four legs where each leg has a single yaw
joint followed by three pitch joints. The radius of the base
link is 7 cm and the initial link lengths of legs are set
to 6, 12.5, and 19 cm, where these parameters are manu-
ally selected by engineers based on prior knowledge. Since
all four legs should be exactly the same to maintain the

Table 6. The results on Tetrabot for the rolling gait.

Rolling Link Maximum
lengths (cm) torque (Nm)

Design Thigh Shin Foot

Initial 6.00 12.5 19.0 230

Motion optimized ~ 6.00 12.5 19.0 1.88

Design optimized ~ 9.70 7.09 5.1 1.21

for rolling

Design optimized ~ 7.15 10.2 16.6 1.58

for both

spherically symmetric morphology of Tetrabot, we cannot
distinguish between the legs within its morphology.

In this section, we are interested in optimizing the design
parameters of Tetrabot for two motions: the rolling gait and
the walking gait.

The first target motion is the rolling gait that walks as
tumble, which was also originally introduced in the work of
Pai et al. (1995) (the first and second rows of Figure 16). In
this motion, Tetrabot begins the gait by gradually pushing
its body toward the edge of the support polygon while the
“top” leg prepares the landing. When the “top” leg touches
the ground, the robot moves its center of mass (COM) to the
adjacent equilateral triangle and lifts the “back” legs until it
returns to the initial pose. The advantage of this rolling gait
is that the robot can casily choose onc of the three possible
walking directions by rotating the “top” leg. To generate the
initial motion plan, we first create the end-effector trajecto-
ries from the rolling motion of a tetrahedron. Then we solve
inverse kinematics (1K) to match the end-effector positions,
while restricting its COM position in the corresponding
support polygon.

In addition, we design the walking gait, which is more
similar to regular quadruped locomotion (the third and
fourth rows of Figure 16). In this motion, Tetrabot sequen-
tially moves its back, right, left, and front legs while sup-
porting its body with other three legs. The step length of
the gait is set to 8 cm with the duration of 4.0 seconds. Once
again, the end-effector trajectories and footfall patterns are
manually designed by engineers and the joint trajectories
are generated by solving IK problems.

The number of design parameters is three if we constrain
the design to be spherically symmetric. However, all four
legs of the robot do not need to be same for the walking
gait. Therefore, we select six design parameters for when
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Fig. 16. The optimized designs and motions of Tetrabot. For the rolling gait, the optimized design (the second row) has shorter link
lengths than the initial design (the first row) to avoid large torques at the red and yellow legs. For the walking gait, the optimized design
(the fourth row) has the shorter red and yellow legs but has the longer blue and green legs than the original design (the third row).

we optimized the design for the walking. The first three
are for the front and back legs, and the latter three are for
the left and right legs. We do not optimize the radius of
the base link because it has the specialized internal struc-
ture to equip a on-board computer and a battery. Finally, we
allow the optimization to change the scale of the motion
plan by introducing the motion plan scale parameter k
(Section 4.2.1).

One of the biggest differences between the implemen-
tation of Pai et al. (1995) and ours is the constraints on
joint angles. Because our robot is larger and heavier, we
need more supporting structure that limits the range of joint
angles. Therefore, we set the limits for hip, knee, and ankle
joint position variables as 105°, 120°, and 130°, which have
been also considered in the optimization.

We summarize the results of the design optimization in
Tables 6 and 7. For the rolling gait, the optimal design
requires only a maximum torque of 1.21 Nm, which is much
less than 2.30 Nm of the initial parameters and 1.88 Nm
of the motion-optimized scenario (top graph in Figure 17).
In our observation, the optimization decreases the torques
at the left and right legs by shortening the shin and foot
while increasing the thigh to secure the desired range of
the motion. In the case of the walking gait, the design opti-
mization mode also reduces the maximum servo torque by
61.4%, which is much larger than 37.8% of the motion opti-
mization mode (bottom graph in Figure 17). The resulting
design has much shorter left and right legs because they
are heavily loaded, while it has longer lengths for the front
and back legs. Also note that the algorithm automatically
changes the update direction of the design parameters a
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Fig. 17. Torque profiles of Tetrabot for the rolling gait (top) and
walking gait (bottom).

few times when some parameters are near limits. Another
interesting observation is that all the optimization tends
to increase the scale of the plan from 5% to 8%, which
results in 1-2 cm larger support polygons. Please refer to
Extension 5 and Figure 16 for more details of the optimized
designs and motions.

In addition, we optimize the design of Tetrabot for both
rolling and walking gaits by creating a new motion plan
by concatenating the two motions. We assume that all four
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Table 7. The results on Tetrabot for the walking gait.

Walking Link lengths (cm) Maximum torque (Nm)
Front & back Left & right

Design Thigh Shin Foot Thigh Shin Foot

Initial 6.00 12.5 19.0 Same 2.49

Motion optimized 6.00 12.5 19.0 Same 1.55

Design optimized for walking 5.90 10.4 25.0 5.99 6.49 11.7 0.96

Design optimized for both 7.15 10.2 16.6 Same 1.58

Fig. 18. Physical prototype of Tetrabot.

legs have the same link length parameters because the
motion includes the rolling gait. The algorithm finds the
optimal design that decreases the maximum torque from
2.49 to 1.58 Nm, which is a 36.5% reduction. Naturally, the
optimized maximum torque is larger than the specialized
designs for each individual task because the robot needs
to execute multiple tasks. For the walking task, it is even
larger than that of the motion optimization. This is because
this multi-gait optimization reaches the lower bound for
the rolling gait first and does not continue to optimize the
maximum torque for the walking gait (Figure 17).

5.6. Hardware of spherically symmetric
quadruped robots

We have demonstrated the validity of the optimized design
and motion in Section 5.5 by fabricating a physical proto-
type using 3D printing and off-the-shelf servos. We selected
the length parameters that are optimized for both rolling
and walking gaits: 7.15 cm, 10.2 cm, and 16.6 cm for
thigh, shin, and foot links, respectively. We printed the
body frame and legs using Stratasys Objet260 Connex®
with VeroWhitePlus and VeroClearPlus materials. An Intel

UpBoard 1.92 GHz controller’” and a 16.8 V, 4,000 mA
lithium-ion battery are enclosed in the body. Each leg is
actuated by four Dynamixel XM-430 W-350 servos whose
stall torque is 4.5 Nm at 14.0 V. The controller software
is written in Python using the official Dynamixel SDK and
runs on Ubuntu 16.04.

In our experiments, the fabricated hardware can success-
fully execute the given motion plans even though there exist
some errors owing to many reasons, such as differences
between simulation and real hardware or lack of the feed-
forward term in the PD controller. For the rolling motion,
the robot safely lands with its top leg without making huge
impacts. The robot slips slightly during the walking motion,
resulting in a decreased step length of 6.7 cm compared
with the theoretical value of 8.0 cm. We believe that the
accuracy of the motions can be improved by applying sys-
tem identification or model learning (Khalil and Dombre,
2004; Abbeel et al., 2006).

6. Discussion and future work

We have presented a novel algorithm for optimizing robot
design parameters, such as link lengths and actuator lay-
outs, and the associated motion parameters including joint
positions, actuator forces, and contact forces at every frame.
To guide the optimization, our algorithm first linearizes the
local manifold of valid designs implicitly defined by a set
of constraints. It then changes the design parameters in
the direction of the locally defined gradient. Our problem
formulation can also take additional inequality constraints,
such as position limits of linear actuators or friction cones
of contact forces. We have demonstrated that our algorithm
is general enough to optimize designs of various types of
robots such as manipulators and legged robots, with both
lincar and rotary actuators. We have also validated the
optimized designs in simulation as well as on fabricated
hardware using off-the-shelf actuators and 3D-printed links.

There are a few possible directions for future work.

The presented design optimization algorithm selects one
target parameter and specifies its change, and determines
the changes in other parameters required to stay on the con-
straint manifold. We have implemented this simple update
rule because it only needs to select a single parameter for
cach time step. Although we have demonstrated that the
proposed scheme is sufficient in various optimization sce-
narios, it may require many iterations to reach the desired
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Fig. 19. We fabricated the prototype of Tetrabot, which is optimized for both the rolling (top) and walking (bottom) gaits.

design or even fall into sub-optimal solutions. Thercfore, it
would be interesting to incorporate more complex optimiza-
tion algorithms into our framework for selecting the target
parameters and their desired changes.

Our algorithm can only consider continuous parameters,
such as link lengths or actuator forces. For future research,
we would like to include discrete variables, such as the num-
ber of actuators, footfall patterns, or the number of joints
actuated by a single actuator (e.g. monoarticular or biartic-
ular), because they are also critical to robot performance.
However, current implementation of the framework cannot
handle discrete variables because it requires the first and
second derivatives of the constraints with respect to the
parameters. For instance, the moment arm of a linear actu-
ator discontinuously changes when the actuator switches
between monoarticular and biarticular configurations.

Although we demonstrated one example of a motion
planning formulation, our approach is agnostic to specific
instances of parameterization and problem formulation.
As long as we can compute gradients of constraints with
respect to variables, our idea of co-optimizing design and
motion parameters using the implicit function theorem can
be applied to the given scenario. For instance, we can easily
adopt a new parameterization method such as Wampler and
Popovi¢ (2009), or add a new constraint such as collision
avoidance.

In our implementation, we only used box-shaped links
due to their simplicity for parameterization. One interest-
ing direction of future work is to include additional design
parameters for editing link shapes. By incorporating the
existing shape optimization techniques for adjusting iner-
tial properties (Prévost et al., 2013) or structural strength
(Musialski et al., 2016), our algorithm will be able to
generate more energy efficient and robust robot designs.

In all examples, our input motion plans are quite sim-
ple consisting of only a single instance of manipulation or
locomotion, resulting in designs specialized for the given
motion plan. Although we performed a preliminary exper-
iment on two motion plans, it would also be interesting to
optimize the design for a family of parameterized motion
plans, such as walking with continuous turning angles.

We could also consider tasks that require more complex
interactions with the environment, such as climbing stairs.
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Notes

1. See http://www.hydro-lek.com/

2. See http://www.bostondynamics.com/robot_Atlas.html

3. Sec also https://youtu.be/M8YjvHYbZ9w and
https://youtu.be/tf7IEVTDjng

4. See http://pydart2.readthedocs.io
5. Sec http://robotis.com

6. See http://www.stratasys.com

7. See http://www.up-board.org
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Appendix A. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior
to 2014 can be found at http:/www.ijrr.org, after 2014
all videos are available on the [JRR YouTube channel at
http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extension

Extension  Mediatype  Description

1 Video Results on manipulators with linear
actuators

2 Video Results on manipulators with four-
bar linkages

3 Video Results on large quadrupeds with
linear actuators

4 Video Results on small quadrupeds with
rotary actuators

5 Video Results on a spherically symmetric

quadruped robot




