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Abstract—We present a novel computational approach to de-
signing robotic devices from high-level motion specifications. Our
computational system uses a library of modular components—
actuators, mounting brackets, and connectors—to define the
space of possible robot designs. The process of creating a new
robot begins with a set of input trajectories that specify how its
end effectors and/or body should move. By searching through
the combinatorial set of possible arrangements of modular
components, our method generates a functional, as-simple-as-
possible robotic device that is capable of tracking the input
motion trajectories. To significantly improve the efficiency of
this discrete optimization process, we propose a novel heuristic
that guides the search for appropriate designs. Briefly, our
heuristic function estimates how much an intermediate robot
design needs to change before it becomes able to execute the
target motion trajectories. We demonstrate the effectiveness of
our computational design method by automatically creating a
variety of robotic manipulators and legged robots. To generate
these results we define our own robotic kit that includes off-
the-shelf actuators and 3D printable connectors. We validate
our results by fabricating two robotic devices designed with our
method.

Index Terms—Mechanism Design, Legged Robots, Manipula-
tion Planning, Kinematics.

I. INTRODUCTION

Over the past five decades, robots have fundamentally
transformed large-scale industrial manufacturing. Nowadays,
as hardware platforms are becoming increasingly versatile and
affordable, robots promise to have an equally profound impact
on other aspects of our lives. Indeed the way we work, learn
and play may forever be changed by service robots that provide
help with chores, exploration, search-and-rescue missions and
educational activities.

While mass-produced robots have well-established advan-
tages, the ability to custom-create designs on demand presents
distinct opportunities. For example, inspection robots can be
created specifically for the environment they need to operate
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in and the tasks they need to complete, while assembly robots
for short run manufacturing can be reconfigured to meet
the demands imposed by different types of products while
remaining as simple and easy to operate as possible.

Partly due to the need to easily configure customized
devices, and partly due to the economy of mass production,
it is common practice to employ a standard set of modular
components (e.g. servomotors, mounting brackets and other
structural elements) when creating robotic systems [1], [2],
[3]. In this setting, the task of designing a new robot amounts
to choosing which components to use, how to combine them
to form a functional system that is sufficiently versatile, and
how to control the resulting device in order to achieve a
desirable set of motions or behaviors. Due to the intimate
coupling between these sub-tasks, the design process is no-
toriously challenging. Most robotic systems available today
are therefore the product of meticulous, time-consuming and
largely manual efforts led by experienced engineers. As the
diversity of robotic devices that enter our lives grows, today’s
design methodologies are likely to become too limiting or
prohibitively expensive.

We propose a novel computational method that efficiently
automates the challenging problem of designing robotic de-
vices. Our computational system takes as input a library of
modular components, as well as basic rules that define com-
patible connections between them. Starting from a high-level
description of a motion task, which is provided in the form
of desired motion trajectories for end effectors or the robot’s
body, our method creates a functional, as-simple-as-possible
design. The output designs are obtained by searching through
the space of possible arrangements of modular components. To
guide this discrete optimization process, we propose a novel
heuristic that estimates the ability of any intermediate design
to reproduce the input motion trajectories.

We demonstrate the effectiveness of our computational
method by automatically designing an assortment of robotic
manipulators and walking robots. To evaluate the scalability
of our approach, we define our own robotic kits that are based
on Dynamixel actuators [4] and 3D printable connectors. We
validate our results by fabricating one of the designs generated
by our method.

II. RELATED WORK

Manual Robot Design Designing robots is a difficult prob-
lem that requires expert knowledge in a range of different
areas, including mechanical and electrical engineering, mo-
tion planning, and control. In creating new types of robots,
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designers oftentimes look to nature for inspiration. Examples
of robots mimicking real-life animals include salamanders [5],
cheetahs [6], kangaroos [7], chimpanzees [8], and cockroaches
[9]. Virtual characters can likewise be used as a source of
inspiration for roboticists [10]. In these cases, however, the
design process begins with a vision for the overall appearance
of the robot. Our computational approach, in contrast, begins
with a description of what the robotic device should be able
to do. Furthermore, rather than relying on mostly manual
efforts, the robots designed with our method are generated
automatically such that they are as simple as possible, yet
sufficiently versatile to execute the motion-based tasks that
are provided as input.
Task-based Robot Design The challenge of creating robotic
devices that are custom-made to perform different tasks has
received considerable attention in the field of manipulator
design. In particular, previous work has addressed the design
of general [11], [12], [13] and parallel manipulators [14], [15],
[16] that reach desired configurations in a specified workspace
while avoiding joint singularities. Other types of robots op-
timized for specific tasks include pipe-cleaning robots [17],
stair-climbing mobile robots [18], and legged robots [19].
In the computer graphics community, Wampler and Popović
[20] demonstrated a simultaneous optimization of gaits and
body proportions for virtual animals. Our work is inspired
by this body of research. However, most prior methods focus
on optimizing continuous parameters, such as limb lengths,
while keeping the morphology (e.g. number of actuators and
their connectivity) of the robot design fixed. In contrast, the
method we propose designs robotic devices entirely from
scratch, concurrently optimizing their morphological structure,
kinematic proportions and motor control signals.
Evolutionary Robot Design Inspired by Sims’s pioneering
work in character animation [21], many roboticists have ex-
plored the use of evolutionary algorithms to aid in the design
process for manipulators [22], tensegrity robots [23], [24],
and soft robots [25]. These approaches rely on the ability
to generate and test a large variety of robot designs in a
physically-simulated environment. Each variation is generated
by combining or mutating existing designs in a stochastic
fashion. Although evolutionary approaches have proven to be
simple and effective in designing robotic devices, they often
lead to local minima and results can be difficult to reproduce
on subsequent runs. The goal of our approach, in contrast, is
to provide a systematic exploration of the space of feasible
robotic devices and their motor capabilities.
Physical Character Design Recent advances in 3D printing
technologies fueled a large body of research on fabrication
and design optimization for physical objects. In this research
domain, the problems investigated have evolved from static
objects to functional devices, including articulated characters
[26], [27], self-balancing artifacts [28], [29], foldable furniture
[30], gliders [31], mechanical toys [32] and automata [33],
[34], [35], some of which are even specifically-designed to
walk [36]. Moving towards the design of increasingly more
complex robotic systems requires the development of pre-
dictive models that capture the interplay between actuation
capabilities and morphological characteristics. Megaro and his

colleagues [37], for example, presented an interactive design
system that generates stable locomotion patterns for legged
robots with arbitrary, user-created morphologies, while Du
et al. [38] proposed a design method to optimize the structure
and flight controllers of multicopters based on a notion of
desired capabilities. Inspired by this body of work, our goal is
to computationally design different types of robotic devices,
from the ground up, based on high-level descriptions of the
tasks they need to perform.

III. OVERVIEW

The goal of our work is to automate the design of robotic
devices based on high-level descriptions of a desired motion.
These high-level descriptions, which are depicted in Fig. 1,
typically consist of center of mass and end effector trajectories,
and they specify how a robot should move.

As illustrated in Fig. 1, the computational method we
propose operates in terms of libraries of modular design
elements, or modules, such as actuators and connectors. The
space of feasible robot designs is implicitly defined through the
way in which these modules can be combined to form complex
systems. Our computational system efficiently explores this
combinatorial design space in search for an optimized, as-
simple-as-possible robotic device that can carry out the desired
motion.

The optimization problem that our computational system
must solve is very difficult: the mechanical design of a robot—
the number and type of design elements to be used, as well as
their connectivity—needs to be optimized concurrently with
the control signals that its actuators must execute to recreate
the input motion trajectories. This observation highlights two
important challenges that must be addressed. First, we must
solve for an unknown number of variables (e.g. number of
design elements) that can take on both discrete (e.g. element
type) and continuous values (e.g. motor control signals).
Second, while searching for a functional robot that is as simple
as possible, incomplete designs that are unable to achieve the
desired motion will also need to be evaluated. In order to
effectively guide the search process, our system must assess
the possibility that each incomplete design will eventually lead
to an optimal robot design.

We address this difficult design optimization problem us-
ing a heuristic-guided tree search algorithm. As illustrated
in Fig. 1, nodes in the search tree correspond to feasible
intermediate robot designs that may or may not be able to
complete the desired motion. To evaluate the cost of any
intermediate design, we begin by augmenting it with an ide-
alized virtual end effector. The virtual end effector, although
not physically realizable, has sufficient degrees of freedom to
solve any task. We employ a specialized numerical solver to
generate control inputs for the resulting hybrid device, such
that it optimally recreates the input motion trajectories. The
solver heavily regularizes the contribution of the virtual end
effector. As a result, its degrees of freedom are only used
to account for deficiencies in the intermediate design that it
augments. If the intermediate design can complete the input
motion by itself, for example, the virtual end effector will
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Fig. 1. Overview. Top: The input modular components (an available set of servos and connectors) and the desired end-effector trajectory. Middle: An example
search tree, which is simplified for visualization purpose. Bottom: The output design and its motion.

not be used at all. Conversely, the fewer (useful) degrees of
freedom an intermediate design has, the more the virtual end
effector will contribute to the motion of the hybrid device.
The degree to which the virtual end effector has to help out
therefore provides a heuristic measure of how well-suited an
intermediate design is for a given input motion.

In Section IV, we formally describe the coupled design and
control problem that is solved by our computational method.
To solve this problem efficiently, we develop an A∗ search
algorithm as described in Section V. Expanding a node during
the search process amounts to creating new robots by iterating
through all compatible modules and appending them to the

current intermediate design. The heuristic function we propose
allows our computational system to explore variations of the
most promising intermediate designs.

IV. PROBLEM FORMULATION

The goal of our computational design method is to automat-
ically generate the simplest robot that is capable of executing
user-specified motions. Two main ingredients are required to
formalize this design synthesis problem. First, we must define
the space of feasible robot designs that needs to be explored.
Second, we need to establish the mathematical foundation
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that allows the design process to be cast as an optimization
problem.

A. Design Space

Fig. 2. Connection rules which specify how design elements (e.g. motor
assemblies and structural links) can be combined to form complex robotic
systems.

Our computational framework takes as input an implicit
definition of the space of attainable robot designs through a
library of design elements and associated connection rules. The
design elements are modular building blocks, such as motors
and structural links. The connection rules define compatibili-
ties between these modular building blocks. Each connection
rule is defined as e = {x, y,x Ty}, where x and y denote a pair
of compatible modules, and xTy is the rigid transformation
that specifies how module x is positioned relative to module
y. Fig. 2 illustrates a few design elements and connection
rules between them. The highlighted structural link can be
connected to different motor assemblies or to other structural
links.

Starting from a base link z, a robotic device D = {V, E}
is represented by a collection V of interconnected design
elements and their connections E . The connection rules are
used to recursively compute the location and orientation of
each module v ∈ V (robots designed with our method
will not feature kinematic loops). The resulting configuration
corresponds to the pose of the robot when all joint positions
are set to 0. We let q represent an arbitrary pose of the robot,
where qj denotes the angle attained by motor mj(j ≤ M)
and M is the number of motors in D. For any vector q,
the configuration of the robot is computed through forward
kinematics.

B. Robot Design as an Optimization Problem

Our computational method aims to find the simplest robot
design that can successfully execute user-provided motions.
To quantify the complexity of a design D, and implicitly
its fabrication cost, we define two terms, gs and ga. The
former estimates the amount of structural material required
to physically realize D; this is achieved by integrating over
the volume of its structural elements. The latter term, ga, is
proportional to the number of actuators included in the design.
Combining these two terms, the complexity of a design D is
given by:

g(D) =
∑
v∈V

gs(v) + wa

∑
v∈V

ga(v) (1)

TABLE I
MOTION CONSTRAINTS

Description Expression
End-effector position constraint aEj(D,q) = Ēj

End-effector orientation constraint bRj(D,q) = R̄j

Base link constraint cP(D,q) = P̄

Self collision constraint ddjk(D,q) ≥ 0

External collision constraint eej(D,q,Φ) ≥ 0

aEj and Ēj evaluate the actual and desired positions of the jth end-effector.
bRj and R̄j evaluate the actual and desired orientations of the jth end-effector.
cP and P̄ evaulate the actual and desired base link positions and orientations.
ddjk evaluates the distance between the jth and kth links.
eej evaluates the distance between the jth link and the environment Φ.

where wa is the weight term.
The desired functionality of a robot is specified through a

set of motion trajectories for its end-effectors or base link.
We discretize these motion trajectories in time to obtain a set
of N target frames, where the time complexity of the entire
search process is near linear to N . A robot design D is able
to achieve the user-specified motions if there exists a set of
poses qi (i ≤ N ) that satisfy all M + P high-level motion
constraints ceqm = 0 (m ≤ M ) and cineqp > 0 (p ≤ P ), which
are collected from all time N frames.

Table I summarizes the types of constraints supported by
our computational method. They include the necessary end-
effector and base link terms, as well as other functional
constraints that ensure the robot’s motion is collision-free.
Although we only provide five types of motion constraints,
they are general enough to describe the input tasks of a
wide range of robotic devices, including manipulators and
legged robots. It is also easy to add new constraints for future
applications if needed.

For any desired motion, we must concurrently generate an
optimized robot design D and control inputs for its motors.
Given the set of objectives and constraints introduced above,
this coupled design and control problem is defined as follows:

min
D,qi,··· ,qN

g(D) + wr

N−1∑
i=1

|qi+1 − qi|2

s.t. ceqm(D,qi) = 0 ∀m ≤M

cineqp (D,qi) ≥ 0 ∀p ≤ P

lp ≤ qi ≤ up ∀i ≤ N

lv ≤ q̇i ≤ uv ∀i ≤ N,

(2)

where the discrete set of poses qi defines the control trajecto-
ries that the robot’s actuators must execute such that it achieves
the desired motion. The term wr is the regularization weight
for increasing the smoothness of the resulting motion. The
terms lp, up, lv , and uv refer to the minimum and maximum
positions and velocities of actuators.

Eq. (2) describes the design optimization in a general form
that can be applied to a wide range of applications. We apply
Eq. (2) in examples for two nominal scenarios: manipulators
(Eq. 8) and legged robots (Eq. 9).

The formulated optimization is a very challenging problem
that features an unknown number of parameters taking on
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both discrete and continuous values. To solve it efficiently, we
present a heuristic-guided tree-search algorithm as described
in the following section.

V. A∗ SEARCH FOR ROBOT DESIGNS

The use of design elements as modular building blocks
presents a natural way of synthesizing novel robotic devices.
Consider a robot design D composed of design elements V .
The connection rules specify which modules V in the design
library are compatible with those in V . Appending any module
y ∈ V to its compatible counterpart x in V gives rise to
new offspring designs, each with potentially different motor
capabilities. Consequently, if design D is not well-suited for
a user-specified motion, one of its offsprings might be.

We use this insight to formulate the problem of generating
optimized robot designs as a shortest path problem. As illus-
trated in Fig. 1, a directed acyclic graph represents all robotic
devices that are realizable given a library of design elements.
Each node in this graph corresponds to a feasible design.
The root is a base link – a special module equipped with a
computing unit and a power source. A directed edge between
two nodes corresponding to designs D1 and D2 implies that
D2 is an offspring generated by appending one compatible
module to D1. The cost associated with this edge quantifies
the added complexity of the offspring design: g(D2)− g(D1).
We further designate goal nodes to be those corresponding to
robot designs that are capable of executing the user-specified
motion. The shortest path from the root of the design graph
to a goal node reveals the robotic device that we seek.

A∗ is a widely used algorithm for path-finding problems.
It works in a best-first search manner by exploring paths that
are deemed most promising. For our problem, A∗ explores the
design that minimizes the estimated total design cost:

f(D) = g(D) + h(D), (3)

where g quantifies the complexity of the current design (Eq. 1)
and h is a heuristic function that estimates the design cost of
required modules that are not yet included in D. By fetching
the most promising design (Eq. 3), we expect A∗ to effectively
find the solution for the given design optimization problem
(Eq. 2).

The nature of the heuristic measure governs the overall per-
formance of the A∗ search process. If it fails to appropriately
estimate the promise of different (incomplete) robotic devices,
it might lead to an exploration of unnecessarily many designs
or to sub-optimal results. However, estimating future design
costs is difficult because even minor updates, such as adding
an actuator or changing the length of a link, can significantly
affect the workspace of the robot, and therefore its motor
capabilities. To address this technical challenge, we introduce
the concept of a hybrid device, which we use to estimate the
changes required to complete any robot design such that it can
achieve the desired motion.

A. Hybrid Devices

We define a hybrid device D̃ to be a robotic design D
augmented with virtual end effectors. This virtual component

Fig. 3. An intermediate design (left) is augmented with a virtual end effector
to create a hybrid device (right). The virtual end effector consists of two
actuated spherical joints connected by a telescoping link. The hybrid device
can solve any motion task described through desired end-effector positions
and/or orientations.

is an idealized device with sufficient degrees of freedom
to solve any motion. The concept of virtual end effectors
is quite general, and they can in principle be defined in
different ways. Given that we describe desired motions in
terms of Cartesian-space motion trajectories, we define virtual
end effectors as assemblies of two actuated spherical joints
connected by a telescoping link, as illustrated in Fig. 3. We
note that although fully functional, virtual end effectors are not
physically-realizable. Further, we assume there is no explicit
correspondence between their degrees of freedom and the
library of modular building blocks that is employed by our
computational design method. Consequently, hybrid devices
only serve the purpose of guiding the search for an appropriate
design, rather than providing a direct recipe for how robots
should be made.

A user can input multiple target trajectories for designing
multi-limb robots. In this case, we augment each leg with
a virtual end effector. We assume that the correspondence
between the limbs and the end-effector trajectories are given.

B. Heuristic Function based on Hybrid Devices

Virtual end effectors are, by design, sufficiently versatile to
solve any input motion. However, our goal is to use them only
to complement the robotic device they augment. This strategy
allows our computational method to estimate how much a
robotic design needs to change before it can complete the
input motion by itself. The answer to this question forms the
basis of the heuristic that guides the search for optimal robot
designs. More formally, to compute the value of the heuristic
function h(D), we begin by solving the following optimization
problem:

min
q̃1,··· ,q̃N

N∑
i=1

||Wqv
i ||1

s.t. ceqm(D̃, q̃i) = 0 ∀m ≤M

cineqp (D̃, q̃i) ≥ 0 ∀p ≤ P

l̃p ≤ q̃i ≤ ũp ∀i ≤ N

l̃v ≤ ˜̇qi ≤ ũv ∀i ≤ N,

(4)
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where D̃ is the hybrid device corresponding to intermediate
design D. The configuration of the hybrid device at any
moment in time, q̃, is defined as [q,qv], where qv describes
the positions of the virtual end effector’s joints. The objective
minimizes the contribution of each DOF of the virtual end
effector, based on a sparsity-inducing L1-norm. Matrix W is
a diagonal weight matrix for adjusting the scales and priorities
of linear and angular joints. We prioritize linear joints by
assigning larger weights while assigning smaller weights to
angular joints.

With this objective in place, a non-zero value for any virtual
DOF highlights the need for a change in the mechanical
structure of the current design D, and indicates that the design
is lacking in terms of actuation capabilities. Throughout the
motion optimization process, the degrees of freedom of the
original robot design can be used as much as necessary,
without penalty. Consequently, if D is already well-suited for
the input motion, D̃’s virtual DOFs have no reason to be used.

In Eq. (4), the objective function only considers the virtual
end effector because our goal is to estimate additional design
costs until being able to execute the given task. However, we
still need to solve the entire motions for both virtual and non-
virtual joints because the functionality of the robotic device
depends on both the design and motion. On the other hand,
we do not need to solve the motion to evaluate the current
design cost (Eq. 1).

Based on the solution to Eq. (4), we evaluate the heuristic
term h(D) in Eq. (3) as follows:

h(D̃, q̃1, · · · , q̃N ) =ws max
1≤i≤N

t(D̃,qv
i )

+wan(qv
1, · · · ,qv

N ),
(5)

where t extracts the length of the telescopic segment and n
counts the number of joints with non-zero velocities. More
precisely, the two terms are defined as:

t(D̃,q) =
∑

j∈J̃ tl(D̃)

|q(j)| (6)

n(q1, · · · ,qN ) =
∑
j

|max
i

qi(j)−min
i

qi(j)|0 (7)

where J̃ tl refers to the indices of the telescopic joints in the
virtual end-effectors of the given hybrid device D̃. Following
the reasoning behind the definition of g(D) (Eq. 1), the first
term in Eq. (5) estimates the volume of material needed
by the virtual end effector. Its value is proportional to the
maximum length of the telescoping segment. The second
term is proportional to the number of non-zero elements in
velocities. We combine terms using the same weights ws

and wa because both terms estimate the future costs of the
corresponding terms in Eq. (1). We illustrate the examples of
heuristic values in Fig. 4.

VI. RESULTS

We validated our design optimization algorithm on two main
types of robotic devices: manipulators and legged robots. The

Fig. 4. Our hybrid-design based heuristic estimates the future design cost
using virtual end effectors. The left design must extensively use the first
spherical joint of the virtual end effector, which results in a high heuristic
value. On the other hand, the right design can track the trajectory only using
the telescopic joint, which results in a low heuristic value.

TABLE II
PROBLEM PARAMETERS

wa wr Wlnr
a Wang

b ∆l c

Manipulators 0.3 0.001 1.0 0.01 0.1m
Legged Robots 0.1 0.001 1.0 0.005 0.01m

aWlnr is the value of the weight matrix W for a linear joint in Eq. (4).
bWang is the value of the weight matrix W for an angular joint in Eq. (4).
c∆l represents the length of the unit link.

simulation and optimization are implemented in Python with
the PyDART [39] and SciPy library [40] on Ubuntu Linux, and
the computations are conducted on a single core of 3.40GHz
Intel i7 processor. The parameters used in the examples are
summarized in Table II.

A. Robotic Kits

Fig. 5. Our robotic kit that include off-the-shelf actuators and 3D printable
connectors.

We designed the modular robotic kit that uses commercial
actuators [4] and 3D-printed connectors. Dynamixel is a
commercial actuator with a controller and a network module.
We used Dynamixel servos as our actuators, and fabricated
links and brackets using 3D printing. We define seven design
elements: a link with unit length, three hinge joints (X, Y, and
Z axes), and two universal joints (X-Z and Y-Z axes), as shown
in Fig. 5. We do not include the Y-X universal joint because it
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Fig. 6. The co-optimized designs and motions of three manipulators. Each row demonstrates the input trajectories and optimized designs for the object moving
task (the first and second rows), the object picking task (the third and fourth rows), and the inspection task (the fifth and sixth rows).

is identical to the Y-Z joint with the 90◦ offset at the Y joint.
The elements can be connected to each other at pin locations,
which are rendered as arrows in Fig. 5. We differentiate X and
Z axes because we fixed relative orientations of modules. We
used the unit link with the different lengths for different sets
of the problems, as listed in Table II.

B. Manipulators

Using our own robotic kit, we first designed a set of
manipulators based on different desired capabilities. Concisely
designed manipulators for specific tasks have many advan-
tages, such as reduced complexity and costs.

We defined three types of tasks for our manipulator ex-
amples: object moving, object picking, and inspection, all
specified through end-effector trajectories. The goal is to track
these input target trajectories with end-effectors while avoiding
collisions with the environment. The object moving and object
picking examples have additional orientation constraints for

the target object, while the inspection example only has the
positional constraints. We assume that the position of the base
link is given as input and kept fixed. Therefore, the design
optimization (Eq. 2) can be written as:

min
D,qi,··· ,qN

g(D) + wr

N−1∑
i=1

|qi+1 − qi|2

s.t. E1(D,qi) = Ē1
i ∀i ≤ N

R1(D,qi) = R̄1
i ∀i ≤ N

djk(D,qi) ≥ 0 ∀i ≤ N, j, k ≤ L

ej(D,qi,Φ) ≥ 0 ∀i ≤ N, j ≤ L

lp ≤ qi ≤ up ∀1 ≤ i ≤ N

lv ≤ q̇i ≤ uv ∀1 ≤ i ≤ N,

(8)

where L refers to the number of rigid links. The functions E1

and R1 evaluate the position and orientation of the single end-
effector at the ith frame, while Ē1

i and R̄1
i are taken from the
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Fig. 7. Different task specifications lead to different robot designs (left: object
moving, right: object picking).

input trajectory. Also note that the orientation constraint R̄1
i

is optional, as shown in the inspection example. Finally, djk
and ej prevent self-collision and collision against the given
environment Φ for all L links.

Please see Fig. 6 and the supplementary video for the
optimized designs and their motions. Although we expected
the design with six servos for the object moving example due
to additional three orientation constraints, the algorithm finds
the manipulator design with five servos (Fig. 6). In addition,
the optimized manipulator for the object picking example also
has the simple design with five servos including one universal
joint, which is less than our expectation. Also please note
that different task specifications result in different manipulator
designs as shown in Fig. 7. The inspection example has
the cluttered environment with three pillars and three balls.
Although three servos is enough when there are no obstacles,
the optimized manipulator has six servos to track the trajectory
while avoiding collisions.

Since the objective is to find the minimal design that
can track the entire target trajectory, the optimized design
may cause near-singular poses. To avoid singularity issues,
we suggest to expand the workspace by enlarging the input
trajectory.

C. Legged Robots

Although we illustrated our algorithm in the context of
a single manipulator, we can also apply the algorithm to
designing legged robots by combining with any operational-
space trajectory generation algorithm. In the pipeline, a user
only needs to specify the desired initial and final positions
of the base-link and end-effectors. Then our system generates
complete trajectories by applying the space-time optimization
[19]. Finally, our algorithm takes as input the generated
trajectories and finds the optimal designs of limbs.

1) Puppybot: We first tested our algorithm on designing
an animal-like robot that can walk forward. The center of
mass and foot trajectories are generated by solving space-time
optimization using centroidal dynamics [19]. The base link
trajectory is set to a few centimeters above the center of mass
trajectory. Besides the generated base link and end-effector
trajectories, we have additional constraints that all links must
remain above the ground. For testing different specifications,

Fig. 8. The fabricated Puppybot.

we also placed additional orientation constraints to rear feet
so that they remain upright during locomotion. To account for
extra orientation constraints, we independently designed the
front and rear legs based on their desired trajectories relative to
the base link. Therefore, the details of the design optimization
(Eq. 2) are:

min
D,qi,··· ,qN

g(D) + wr

N−1∑
i=1

|qi+1 − qi|2

s.t. Eh(D,qi) = Ēh
i ∀i ≤ N,h ≤ H

Rh(D,qi) = R̄h
i ∀i ≤ N,h ≤ H

P(D,qi) = P̄i ∀i ≤ N

djk(D,qi) ≥ 0 ∀i ≤ N, j, k ≤ L

ej(D,qi,Φ) ≥ 0 ∀i ≤ N, j ≤ L

lp ≤ qi ≤ up ∀1 ≤ i ≤ N

lv ≤ q̇i ≤ uv ∀1 ≤ i ≤ N,

(9)

where L is the number of rigid links in the design D and H
is the number of end-effectors. As L and D change during
the search, H remains constant (H = 4 for the Puppybot).
The foot-fall pattern of the operational space motion plan is
implicitly encoded in the desired end-effector trajectories (the
rth end-effector is in contact if and only if the desired position
Ēr

i is on the ground). Finally, ej only checks for collisions
with the ground.

The optimized quadruped has three servos for the front legs
and four servos for the rear legs. Based on the optimized
design, an engineer generated required link meshes and base
boards (Fig. 8, Top). Feet are fabricated as rubber-coated hemi-
spheres. We tethered the fabricated quadruped to a computer
and replayed the trajectories that were concurrently optimized
with the morphological design. The joint trajectories were
tracked by local servos and we did not implement any bal-
ance controller. Although the fabricated Puppybot had larger
movements in the side direction due, e.g., to joint slackness
and link deformation, it was able to walk for multiple gait
cycles. Please refer to the supplemental video for simulated
and real motions of the Puppybot.

2) Tetrabot: Inspired by the work of Pai et al. [41], we
optimized the design of a spherically symmetric quadruped
that is reminiscent of a tetrahedron, so called Tetrabot. The
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Fig. 9. The co-optimized designs and motions of two legged robots. Each row demonstrates the input trajectories and optimized designs of the Puppybot (the
first and second rows) and the Tetrabot (the third and fourth rows).

Fig. 10. The fabricated Tetrabot.

walking mechanism of this Tetrabot is unintuitive yet sur-
prisingly simple: starting from the initial tetrahedron shape, it
gradually pushes its base link toward the edge while preparing
the landing with the leg on the top. By moving the base link
beyond the edge of the support polygon, the robot gently
falls toward the edge, and lands on the adjacent equilateral
triangle. After landing, it goes to the initial tetrahedron shape
once again. Based on this intuition, we generated the input
trajectories by interpolating positions and orientations of two
adjacent tetrahedrons while keeping the horizontal position of
the base-link in the support polygon with 2 cm margins.

In our experience, designing a spherically symmetric robot
was not intuitive even for experts due to non-orthogonal
coordinate frames, collisions, and joint angle limits. However,
our optimizer was able to find a minimal robot design that has

one Y-Z universal joint and two Z-axis hinge joints (Fig. 9 and
Fig. 10). One noticeable difference to the design of Pai et al.
with three servos per legs is that our design uses four servos
per legs due to the joint angle limits on the defined Dynamixel
kit, which was against our intuition. We verified the minimality
of the design by running an exhaustive search with three DoFs
limits, which resulted in no solutions. The algorithm found a
three DoF solution only when we increased the joint angle
limits from ±135◦ to ±160◦, which is difficult to realize as
a durable physical prototype. Once again, we fabricated the
untethered Tetrabot using Dynamixels and 3D-printing. The
fabricated Tetrabot was able to walk multiple steps without
losing its balance: please refer to the supplemental video for
its motion.

D. Comparison of Algorithms

We compared the algorithm we propose, A∗ with a hybrid
device based heuristics function (Hybrid), to two baseline
algorithms: breadth-first search (BFS) and A∗ with an error-
based heuristic function (Error). The error-based heuristic
function estimates the effectiveness of the intermediate device
by converting all constraints into soft constraints and calcu-
lating a sum of errors. Because this error-based heuristic has
different units than the cost function (Eq. 1), it is difficult
to intuitively interpret the effects of combining the cost and
heuristic terms.

We use the number of expanded nodes until finding the best
design as comparison criteria. Note that it is not intuitive to
analytically prove the optimality of the generated designs due
to the combinatorial nature of the problem. To ensure that we
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TABLE III
THE RESULT STATISTICS.

Problem Optimal Design # Expanded Nodes (Elapsed Time in Minutes) a

Type Task # Frames Duration(sec) # Servos
∑

Length BFS Error Hybrid
Manipulator Object moving 21 4.0 5 0.60 10000+ 10000+ 2267 (76)
Manipulator Object picking 21 4.0 5 0.80 10000+ 10000+ 2224 (79)
Manipulator Inspection 21 4.0 6 1.60 20000+ 20000+ 13203 (402)

Legged Robot Puppybot 13 1.5 14 1.14 501 (81) 408 (72) 276 (56)
Legged Robot Tetrabot 21 4.0 16 0.96 10000+ 1430 (307) 165 (37)

aThe plus sign (+) indicates that the number of expanded nodes reached the limit without finding a feasible design.

find the optimal design, we let the optimization run until it
enumerates all the available configurations with lower design
costs to show the optimality of the solutions.

The result statistics are presented in Table III. For all
examples, the hybrid device based heuristic shows the best
performance by finding the optimal design with a minimal
number of expanded nodes. We have noticed that sometimes
it finds non-optimal functional designs first and requires addi-
tional 10% to 20% more nodes to find the true optimal design
for the subset of problems (object moving, object picking,
and Puppybot). We believe the local solutions in Eq. (4)
are the cause of the inadmissibility, which requires further
examination. BFS shows good performance for the simple
problem (Puppybot) but fails to find any functional design
within the evaluation limits for all the other problems due to
its exponential time complexity with respect to the number
of modules in the optimal design. For instance, it needs to
evaluate at least a few million designs to solve the inspection
example. The A∗ with the error-based heuristic generally
expands three to ten times more nodes than the A∗ with the
hybrid device based heuristic that we propose.

VII. DISCUSSION AND FUTURE WORK

We presented a novel heuristics algorithm that optimizes
designs of robotic devices for user-provided motion tasks.
The design parameters include the number of links per limbs,
joint types, link lengths, and motor control signals. Our key
insight is to formulate the design optimization as a shortest
path-finding problem, which can be solved by an A∗ algo-
rithm driven by a novel heuristic function. The robustness of
the proposed algorithm is validated by generating optimized
designs for various manipulators and legged robots. Further,
the efficiency of the algorithm is demonstrated by comparing
with two baseline algorithms, a breadth-first search and an A∗

algorithm with a simple error-based heuristic function.
The discrete nature of our algorithm prevents it from

optimizing finer details of continuous variables, such as link
lengths, link offsets, or servo orientations, which may lead
to better designs with lower costs. Further, the optimization
of these variables has other practical values such as avoiding
self-collisions or adjusting ranges of motions. We expect that
these extra continuous parameters can be further optimized as
a post-process as suggested in prior works [12], [20], [19].

In practice, our heuristic search is not always admissible.
Although the admissibility is not a necessary condition for
A∗ search, it can be a convenient tool for guaranteeing the

optimality of the solution. We suspect that non-convex opti-
mization problems in Eq. 1 and Eq. 4 cause non-admissibility.
If a globally-optimal solver could be devised, we believe our
heuristic function would be admissible, which is one possible
direction for future work. Another interesting approach is to
adjust admissibility by statically or dynamically weighting the
intermediate and heuristic costs during the search process [42],
[43].

Another direction of future work is to consider dynamics
or control of robots, rather than focusing on only kinematic
capabilities. For instance, we can add an additional objective
term for minimizing a sum of squared torques or constraints
on maximum torques. Otherwise, we can test whether a robot
can exert desired forces at its end-effectors by checking joint
singularities. We believe the proposed searching framework
can be extended with additional constraints.

In all examples, we only took a single motion plan as
an input to find specialized robot designs. In practice, many
working environments require versatile robots that can handle
multiple related tasks, such as manipulating different types of
objects. Therefore, it will be interesting to design a robot for
a family of parameterized motion plans.
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