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ABSTRACT

Synchrony is an essential aspect of human-human interac-
tions. In previous work, we have seen how synchrony man-
ifests in low-level acoustic phenomena like fundamental fre-
quency, loudness, and the duration of keywords during the
play of child-child pairs in a fast-paced, cooperative, language-
based game. The correlation between the increase in such
low-level synchrony and increase in enjoyment of the game
suggests that a similar dynamic between child and robot co-
players might also improve the child’s experience. We report
an approach to creating on-line acoustic synchrony by using
a dynamic Bayesian network learned from prior recordings
of child-child play to select from a predefined space of robot
speech in response to real-time measurement of the child’s
prosodic features. Data were collected from 40 new chil-
dren, each playing the game with both a synchronizing and
non-synchronizing version of the robot. Results show a sig-
nificant order effect: although all children grew to enjoy
the game more over time, those that began with the syn-
chronous robot maintained their own synchrony to it and
achieved higher engagement compared with those that did
not.

CCS Concepts

eInformation systems — Collaborative and social com-
puting systems and tools; eHuman-centered computing
— Interactive systems and tools; Empirical studies in col-
laborative and social computing;

1. INTRODUCTION

Human-human interaction is more than just exchanging
messages explicitly. There are other para-linguistic cues
that facilitate the interaction by creating a sense of rap-
port and bonding between the interlocutors. Among these
cues are nonverbal behaviors such as gestures, postures, and
prosody [3,13]. Studies have shown that there are subtle
cues of synchrony between prosodic features of speech from
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both parties in a conversation [13,15,25], and that coordi-
nation between dyads is associated with a positive effect on
engagement, even very early in life [9,17]. The positive effect
of synchrony on interactions between people suggests that
we might make human-robot interaction more natural and
engaging by incorporating similar mechanisms in a robot
partner and making it responsive not only to the content,
but also the para-verbal behavior of the user.

We explore this possibility in the context of a simple,
language-based video game called Mole Madness (MM). Pre-
vious work examining the behavior of child-child and child-
robot co-players in MM showed two related phenomena.
Chaspari et al. [6] investigated children’s level of engage-
ment during game play with each other'. It was found that
the association of speech features between the two children
- including fundamental frequency (F0), loudness, and word
duration - was stronger during the times that the children
were judged to be highly engaged in the game. When the
analysis was extended to child-robot play with the same set
of children [7], there was no coordination of prosodic features
and lower engagement scores overall.

The work reported here tests the hypothesis that chil-
dren’s experience with the robot can be improved by better
approximating the synchrony found in more engaged child-
child pairs. In particular, we use the data from children
studied in [6] to train a dynamic Bayesian network (DBN)
that captures the strong correlations for FO and loudness.
The model is used during gameplay to select the robot’s
prosodic features adaptively, based on the child’s values. Al-
though rate of keyword speech did not reach statistical sig-
nificance in [7], the trend in the data was strong enough to
suggest adding that type of verbal synchrony to the robot’s
behavior as well. Our proposed system uses a k nearest-
neighbor approach in the multi-dimensional space of FO,
loudness, and repetition to choose an utterance for the robot
when a game action is required. In an experiment with a new
set of children, each child played multiple game levels with
both synchronizing and non-synchronizing versions of the
robot, with order of condition counterbalanced across chil-
dren. The results showed both the dyadic nature of synchro-
nization and its profound effects. Children who played with
the synchronizing version of the robot first maintained their
prosodic synchrony to it even when it stopped maintain-
ing its prosodic and verbal synchrony to them, and in this
order engagement rose steadily across the session. In con-

!Technically, the scales measure child’s degree of willingness
to continue to play, as judged by adults with extensive ex-
perience with young children.



(b) Sammy-Child play

Figure 1: Snapshots of the game and participants.

trast, children who began with the non-synchronizing robot
co-player never reached the same level of engagement over
time, despite the robot’s eventual adoption of synchronous
speech.

After reviewing related work by others (Section 2), we de-
scribe prior work with Mole Madness in detail, both to ex-
plain the properties of the data we used to train our robot’s
new adaptive behavior and to create a baseline for analyz-
ing synchrony (Section 3). We then turn to the method for
training (Section 4), describe deployment of the models in a
real-time adaptive implementation (Section 5), and present
results from a new set of child co-players (Section 6).

2. RELATED WORK

Several authors have investigated synchrony between prosodic

features of interactants and its effects on conversation. De
Looze et al. [15] studied the relationship between mimicry
of prosodic speech features and the level of involvement of
people in a conversation. Mimicry strength was measured
by correlations among several features throughout the con-
versation, and their results showed that level of involvement
is positively correlated with the coordination of speakers’
prosodic cues. Suzuki and Katagiri [25] conducted a simi-
lar experiment to see whether humans entrain to prosodic
features while communicating with a computer. They ma-
nipulated prosodic features of the speech generated by the
computer such as loudness and pause duration, and observed
the user’s response. The results indicated that users entrain
to some extent to the speech provided to them, e.g., they
produced louder sounds as the volume from the computer
increased. Our approach extends this work not only by ex-
ploring other speech related features such as F0, but also by
using a robot instead of disembodied computer-generated
speech, and by examining the phenomena in interactions
with children.

Most HRI studies about synchrony have been focused
on rhythmic adaptation [4]. Michalowski and colleagues
[18], for example, studied the effects of the synchronous
and non-synchronous behaviors of a Keepon robot that was
able to dance in coordination with music and children’s
movements. They found that children’s interaction with the
robot was positively affected by the robot’s responsiveness
to their actions. In a more recent laboratory study using
the same robot [19], the authors found contradictory re-
sults when measuring children’s retention (i.e., willingness

to continue interacting with the robot) while dancing with a
synchronous robot and a non-synchronous one. The authors
attribute the mixed results to limitations in their rhythmic
perception system, and discuss the challenges of measur-
ing children’s engagement in playful interactions. In the
same line of research, Avrunin et al. [2] investigated people’s
impressions of agency and life-likeness of dancing robots.
In their study, adult participants judged videos of dancing
robots with regard to dance quality, life-likeness and enter-
tainment value. While life-like motion was considered more
entertaining, the results suggest that perfect synchrony (i.e.,
robot movement always matching the sound) is less life-like
than a situation in which the robots are not always in sync.
More recently, Hoffman and Vanunu [11] conducted a study
where participants listened to music in the presence of a
robot that was moving in sync with the music, off beat, or
not moving at all. Despite not being aware of the beat pre-
cision, participants interacting with the synchronizing robot
rated the songs more positively, and provided higher ratings
in perception traits like human-likeness and similarity.

Another related area is psycho-motor alignment, wherein
research typically focuses on the temporal relations between
the actions of two or more agents (humans or robots) per-
forming an activity together. In this domain, Prepin and
Gaussier [22] proposed an architecture that enables a robot
to move its arms in synchrony to the arms of a human user.
The convergence of their reinforcement learning algorithm
is a sign that the robot successfully learned to synchronize
its movements to those of the user. Igbal et al. [12] inves-
tigated psycho-motor entrainment in the context of human-
robot teamwork. They presented an event-based model to
enable robots to measure synchronous motion between hu-
mans, with the ultimate goal of enabling fluid joint action
between robots and groups of people. Using data collected
from mobile robots sensing pairs of humans marching syn-
chronously and non-synchronously, the authors showed that
their model can accurately detect synchronous motion. We
use a method that is analogous to theirs but in a different
modality and with continuous phenomena.

3. UNDERSTANDING SYNCHRONY IN MM

Our work extends previous results with children playing
the same game. Indeed, the method for building a syn-
chronizing version of the robot co-player, Sammy, relies on
data collected during those earlier studies, and the non-



synchronizing play observed in those games establishes a
baseline against which to evaluate our results. In this sec-
tion we review the prior work in detail to clearly distinguish
both what is new and why.

3.1 The Game

Mole Madness (MM) is a speech-controlled, interactive
side-scroller in which two players move a mole through its
environment, avoiding obstacles and gaining rewards [14].
Effective play requires coordinated use of the keywords “go”
and “jump,” which control horizontal and vertical motion,
respectively (see Figure 1(a)). Each participant is responsi-
ble for one keyword/direction at a time, but switches roles
between levels. The game is designed to be easy to learn by
children as young as four, but still fast-paced enough to be
fun for children who are nine or ten.

MM can be played by two children (CC), or by a child
and Sammy (SC), a back-projected robot head designed by
Furhat Robotics [1] that has been set in a cardboard body to
sit next to the child in a more peer-like way (Figure 1(b)).
An overall architecture controls the multiple parallel pro-
cesses for the game, the robot, and the custom word spot-
ter that performs keyword recognition. The game is pro-
grammed in Unity3D, and Sammy plays by accessing an
A* search algorithm that returns a go/jump decision based
on the next move along an optimal path. Sammy’s vocal
space of utterances consists mainly of a set of pre-recorded
keyword files that vary with respect to prosodic features,
durations, and frequency, although the robot also has some
social speech that can be deployed at various points in the
environment when gameplay allows.

3.2 Data Set 2015

Although MM has been used and reported on across many
data collections, the data set that forms the basis of the
models described in Section 4 (hereafter, DS15) reflects play
by 86 children (51.16% girls), ages four through nine, in
2015. Children in DS15 played MM first in child-child pairs,
then one-on-one with Sammy, producing 43 CC games with
a mean duration of 355 seconds, and 85 SC games (one of the
children did not play with the robot) with a mean duration
of 216 seconds. Data was recorded by two high resolution
cameras and a high-precision, omni-directional microphone.
Instances of “go,” “jump,” and non-keyword social speech
were segmented and annotated by hand.

3.3 Analysis of Synchrony in DS15

Windowing. Following Chaspari et al., we examine the
correlation between speech and prosodic features over 10-
second window intervals (see Figure 2(a)). Using the hu-
man annotations for the keywords “go” and “jump,” acous-
tic features for loudness and FO are extracted using openS-
MILE [8], separately for each keyword. Because the system
uses only one microphone, we exclude portions of the seg-
ment where the annotations indicate voice overlap in order
to avoid cross-participant contamination of the values.? If

2The custom word spotter avoids the problem of sound lo-
calization by explicitly modeling keyword overlap. Because
children are assigned one keyword on each level and moving
the mole requires cooperative use of both commands, it is
almost always the case that different keywords belong to dif-
ferent voices. The small number of occasions when a child
usurps the other player’s role in the excitement do add some
noise to data.
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Figure 2: Two strategies for analyzing the amount
of synchrony between participants. In (a), average
values for prosodic features are computed separately
for each player’s non-overlapping speech within a
ten second window and correlation is computed for
windowed pairs. In (b), the influence is assumed to
be limited to the duration of the echoic buffer and
the segment containing a non-overlapped instance
of player 2’s keyword is paired with all of player 1’s
non-overlapped speech in the previous four seconds.

a window contains multiple instances of the same keyword,
the values of each feature are averaged across the 10-sec in-
terval. We also derive an additional feature that encodes
separately for each keyword the number of times that key-
word was uttered in the segment (a point we will return
to in Section 4). Pearson correlation (r) tests between the
features extracted for each player in the same window of
analysis showed higher correlation percentages in the CC
sessions (rro (11486) = 61.66,p < 0.001, Toudness (11486) =
67.34,p < 0.001, "greywords (11486) = 56.28,p < 0.001)*
than in the SC games (rro (18177) = 5.69, p < 0.001, r'ioudness
(18177) = 13.40,p < 0.001, T4keywords (18177) = 14.26,
p < 0.001). Considering that Sammy’s keywords were ran-
domly selected from a small pool of pre-recorded keywords,
the lower correlation values in the SC pairs are not surpris-
ing.

Following. An alternative way to analyze synchrony con-
strains player 1’s influence on the prosodic features of player
2’s keyword to the duration of player 2’s auditory short-
term memory [5]. Under this method, depicted in Figure
2(b), we produce paired values for each non-overlapping
keyword with the average values for non-overlapping in-
stances of the other keyword in the prior four seconds. Such
pairs implicitly define two different “follow” relations: the
subset of instances in which player 1 follows player 2 and
the subset of instances in which player 2 follows player 1.
Thus we can separately compute correlations when child

3The Pearson correlations are reported as r(#instances), p-
value.



follows child from the CC sessions and when child follows
Sammy and Sammy follows child from the SC sessions of
D15. We find that correlations between pairs of segments
where Sammy follows the child (1o (5656) = 0.019,p = 0.24
and Tjoudness (5656) = 10.63, p < 0.001) and where the child
follows Sammy (rpo (6962) = 4.35,p < 0.001 and Tioudness
(6962) = 15.60,p < 0.001) are lower than when the two chil-
dren are following each other (rro (6098) = 46.44,p < 0.001
and Tloudness (6098) = 5290717 < 0001)

These results indicate that Sammy’s vocal behavior was
not synchronous with the child during the game, especially
in terms of FO. Although the analysis shows a positive cor-
relation of 10.63 when Sammy follows the child, this value
is much smaller than the average correlation value when a
child follows another child (r = 46.44), and may be the re-
sult of low variability in the loudness of Sammy’s small set of
pre-recorded keywords. Note that the correlations derived
from the following method show the same overall trends as
the correlations derived from windowing but give us a more
cognitively-motivated approach to understanding the child’s
behavior in response to Sammy’s.

4. SYNCHRONIZING SAMMY

Because greater engagement was seen in child-child pairs
who were in sync, we consider their verbal behaviors to be a
model of how Sammy should behave as a peer co-player with
the goal of creating an enjoyable game experience. Thus, we
take advantage of the child-child data in D15 to synthesize
more synchronized verbal behaviors for Sammy. The pro-
cess has two phases: building the entrainment model that
captures the strong correlation of acoustic features in the
CC sessions and deploying the model in real-time play.

4.1 Modeling Entrainment

We chose to model the children’s coordination with a dy-
namic Bayesian network (DBN) learned from the child-child
sessions in the DS15 corpus. DBNs are a type of statis-
tical model that has been shown to be able to capture the
strong correlations between time series. DBNs also learn the
possible dependencies between consecutive frames as their
transition probabilities, and have been used in the past to
generate head movements synchronized with speech prosodic
features [16,23,24].

The relationship Sammy’s Bayesian graph must capture
can be seen in Figure 3. The nodes F0.1, Le1, FOc2, and Lea
represent observed continuous variables for FO and Loud-
ness of two children playing together, which are modeled by
Gaussian distributions. The two nodes affiliated with c2 are
only observed during training, and are synthesized by the
model during testing and play. The nodes Hci 2 are dis-
crete variables representing the hidden states. The hidden
states model the possible joint configurations between the
prosodic features of the first and second child. For instance,
if high FO in one child is usually accompanied with high FO
in the other child, the hidden states learn this association.
These discrete variables are trained to capture the correla-
tion between the input modalities, and exploit that during
synthesis.

For the model, we assume that the transition probabili-
ties follow a Markov property of order one, i.e., they depend
only on one previous time step. We choose a one second
time step for responsiveness; this step size allows Sammy
to adapt, close to real time, to changes that are happening

t-1

Hcl,cz H cl,c2

Figure 3: The Bayesian graph of the model for en-
trainment, where L is loudness, and the subscripts
cl and c2 refer to the first and second child.

with the features of the child. Although children may only
be sensitive to prosodic features in the prior four seconds
of speech, Sammy does not need to have that limitation.
More importantly, by extending the window for computing
features to 10 seconds, as was done in the windowing analy-
sis, we increase the number of training instances available to
the model from the DS15 corpus. For instances where there
are no keywords from the other player even in the previous
ten seconds, we use a fixed FO and loudness based on the
speaking child’s averages in DS15.

The DBN comprises the prior probabilities of the hidden
states, the transition probabilities between the states, and
the observation probabilities given each hidden state. We
optimize all these parameters using an Expectation Maxi-
mization algorithm (EM). To use the EM algorithm, we first
derive the probabilities of the states given the observed se-
quences, by running the forward-backward algorithm [16,20]
(E-step). Next, we maximize the likelihood of the model by
updating all the parameters (M-step). The details of train-
ing a DBN are provided in [20].

Note that, during testing, we do not have access to the
future data, and therefore, we run only the forward algo-
rithm [20]. Given the observation vector until time ¢, the
forward path gives us o ¢, which is the probability of the i*"

hidden state (o, 2p (Hci,e2, = |y1:t)). Given a sequence
of features for one of the players, the following equations
calculate the expected values of the features for the other
player (in our case, the robot), where pro, ,, and pr, ., are
the mean of the FO and loudness for the ‘" hidden state for
the second player.

E[FOc2,t| FOc1,1:¢, Le1,1:¢) = Zai,t X [UF0; 5
i=1
n (1)
E[Lea,t| FOc1,1:t, Le11:] = Zai,t X WL o
i=1

During testing with the entrainment model, we provide
the DBN with FO and loudness of the first child, and get the
predicted values for FO and loudness for the second child
(which is Sammy), but there is no guarantee that Sammy’s
sound files have an instance of the keyword with values that
exactly match the predictions.

4.1.1 Optimizing the model on DS15

Using the entrainment model, we aim to capture the strong
correlation which is demonstrated in D15 recordings between
children in the CC sessions. Utilizing this correlation will
allow us to generate prosodic features for Sammy which are
synchronous to the child. Overall, we used 11486 (10-s) win-
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Figure 4: Overview of the real-time system.

dows for predicting childl from child2, and because Sammy
can be in either role, concatenated them with the same data
reflecting child2 predicting child1l. Therefore, we used 22972
samples for training in total.

Since the aim of this model is to predict the verbal fea-
tures, we measure the R-squared between the predicted fea-
tures and the original ones. We use the average of the R-
squared for the two features as the metric to find the optimal
number of states (R2,) by running a Leave One Pair Out
(LOPO) cross validation — in every loop we use one fold for
testing, one fold for validation, and the remaining 41 folds
for training. The LOPO cross validation metrics are given
in Table 1, where 7, is the Pearson correlation between
the original and predicted features, ro_,,p., is the Pearson
correlation between the original feature for the first child,
and the predicted feature for the second child. The result
shows that our entrainment model is able to capture the
high correlation displayed in the data. The average of the
chosen number of states across folds is [15.6] = 16. Thus,
the model trained with all the data, to be used by Sammy
in real-time play, uses 16 states.

4.2 On-line adaptation for keywords

The entrainment model outputs, in real-time, an estima-
tion of the FO and loudness that the robot should approxi-
mate in its own speech in order to behave in synchrony with
the child. This section describes the implementation details
that enable the robot to perceive the child’s prosodic fea-
tures in real-time and make its own keyword selection based
on the entrainment model. An overview of this pipeline is
shown in Figure 4.

The first step of the process consists of segmenting chil-
dren’s speech and excluding the overlapping segments where
the child and the robot are speaking in parallel. This is done
by combining information from an event-based module that
keeps track of when the robot begins and finishes speaking
and a real-time keyword spotter that recognizes the key-
words “go” and “jump” with 89% accuracy [10]. For the
recognized keyword segments not belonging to Sammy, the
system then extracts FO and loudness in real time with the
port-audio version of OpenSMILE [8]. Whenever Sammy
receives a request from the game module to issue a game
keyword, the system uses the most up to date FO and loud-

Table 1: Evaluation metrics on the predicted FO and

loudness with the entrainment model of 86 children.
Metric FO Loudness
(%] (%]
R, 46.31 42.26
To,p 69.53 66.24
Tou1,pes 95.33 89.30

ness values extracted from the child’s speech segments (recall
that we use a 10-s window cache) as the input for the en-
trainment model, which in turn outputs the robot’s desired
F0 and loudness.

The next step is to select a sound file with the most similar
features to the ones given by the entrainment model. The
robot has available a pool of pre-recorded keyword samples,
including 1923 samples for “jump” and 1600 samples for “go”
with different volumes, FO levels, and keyword durations
(e.g., elongated and rapid keywords). From this pool, we
select the 50 nearest neighbors of the features predicted by
the entrainment model and create a list of candidate audio
files.

We then sort the 50 candidate audio files according to how
close their total duration is to the duration of the child’s
speech segment, because in the child-child data we observed
that the children’s total duration of keywords was correlated
with each other (r = 47.46% and their average distance =
1.062). Finally, we select from the ordered list the top file
that has not been used in the past 20 seconds in order to
ensure variability in the choices the child hears. In the un-
likely situation that all the keyword files from the 50 NN
have been played in the past 20 seconds, we ignore this rule
and play the best fit.

S. EVALUATION

To evaluate the impact of the entrainment model dur-
ing real-time game play, we invited a new group of chil-
dren (hereafter, DS16) to play Mole Madness who had never
played the game before. In a repeated-measures design, each
child played with two different versions of Sammy: synchro-
nizing and non-synchronizing. The two versions differ in the
algorithm for selecting the sound file for the robot’s speech
when the game module issues a go/jump command. In the
synchronizing version, the system chooses a sound file from
the 50 nearest neighbors according to the process described
in the previous section; in the non-synchronizing version,
Sammy’s sound file is randomly selected from all possible
files other than the 50 nearest neighbors. We counterbal-
anced the order of conditions across participants: children
who started by playing with the synchronizing version of
the robot and then switched to the non-synchronizing ver-
sion are labeled as being in the SN condition, while children
who played with the non-synchronizing version of Sammy
first are labeled as N'S.

5.1 Participants

We recruited 40 new children (50% girls) via postings in
physical and online community boards. The children’s ages
ranged from 4 to 10 years old (M = 6.73 years, SD = 1.72).
Twenty-one of the children were assigned to the SN condi-
tion (M = 7.07 years, SD = 1.73) and the rest (19) to the



NS condition (M = 6.36 years, SD = 1.69). Both conditions
were gender-balanced.

5.2 Procedure

To put the children at ease, an experimenter began the ses-
sion by introducing the child to Sammy and letting him /her
personalize the robot’s appearance using a variety of acces-
sories. Next, the child watched a brief video tutorial about
how to play the game, then was told by the experimenter
that Sammy had two different ways to play the game and
together they would play both.

Each child played a total of four levels of the game, al-
ternating between the “go” and “jump” roles. Depending
on the experimental condition to which the child was as-
signed, Sammy played the first two levels using the syn-
chronizing or non-synchronizing version, then after a short
break, switched to the other mode for the third and fourth
levels. To ensure the same difficulty in both conditions, the
first two levels were exactly the same as the last two but
had different backgrounds to make the repetition of the lev-
els less conspicuous to the child. Data from these sessions
were recorded by two high-resolution cameras and a high-
definition microphone for future analysis.

5.3 Results and Discussion

We analyzed the recordings in DS16 to explore possible
effects of the robot’s synchronizing and non-synchronizing
behaviors. We first calculated the amount of synchrony that
we actually created in the robot when it played with the chil-
dren. Next, we measured the amount of synchrony elicited
from the children by different versions of Sammy. Finally,
we investigated the relationships among the children’s en-
gagement scores, the versions of Sammy (synchronizing vs.
non-synchronizing), the order of the games (first two rounds
vs. second two rounds), and the age of the children.

5.3.1 Analysis of Synchrony in DS16

We replicated the Following methodology described in
Section 3.3 to analyze the audio data collected in the D156
experiment and compared it with the DS15 results. FO and
loudness were extracted for all of the non-overlapping key-
words from both Sammy and the child and paired in a sim-
ilar manner as in Section 3.3. We then sorted the keyword
pairs into two groups: Sammy follows Child and Child fol-
lows Sammy. The Pearson correlation (r) percentages, or-
ganized by experimental condition and robot’s behavior, are
displayed in Tables 2 and 3*.

The results for the instances in Table 2, where Sammy
follows the child, serve as a basic assessment of the on-
line entrainment method in real play. While the synchro-
nizing games show significant high correlations for both FO
and loudness, the correlations are not significant for either
prosodic feature in the non-synchronizing games. As men-
tioned previously, we cannot guarantee “perfect synchrony”
unless we synthesize the voice or have available a large enough
number of sound files that the robot can always find a per-
fect match for every combination of features. Nevertheless,
these results indicate that our method was successful.

The most interesting results, however, are the degree of
correlation for the instances of the child following Sammy,

4The results for the 10-s Windowing method revealed ex-
actly the same trends as the ones we report for Following.

shown in Table 3. When children played with the synchro-
nizing version of the robot, our features of interest were sig-
nificantly positively correlated, regardless of the order that
children were assigned (SN or NS). However, the patterns
for the non-synchronizing games are more complex: when
children began by playing with the non-synchronizing ver-
sion of Sammy (NS condition), the prosodic features of the
child and the robot are not significantly correlated in those
non-synchronizing levels, but when they started by playing
with the synchronizing version of Sammy (SN condition)
and then switched to the non-synchronizing version, signif-
icant positive correlations in those non-synchronizing levels
remained. These results suggest that children maintain their
prosodic synchrony with the robot for some time even after
the robot stops synchronizing its prosody with them.

5.3.2  Analysis of Engagement

We asked three annotators with extensive experience in
behavioral analysis (including coding more than 100 chil-
dren in MM in previous years) to judge the children’s lev-
els of engagement during the game. The annotators were
blind to our research questions. They were asked to watch
videos of the DS16 MM sessions with only the child visible
and segment the video according to a seven-point scale de-
scribing the child’s willingness to continue to play. Four of
the scale’s ratings were labeled; 1 as ready to do something
else, 3 as could take it or leave it, 5 as very much into the
game and 7 as can’t drag him/her away, while ratings 2, 4,
and 6 were unlabeled. One level could have multiple an-
notations with different ratings; thus, to derive the level’s
engagement score, we performed a weighted average of the
ratings given by an annotator based on the duration of the
ratings in the entire game. Because each child played four
levels of the game, annotation of DS16 produced 4 engage-
ment scores x40 childrenx3 annotators.

The Cronbach’s alpha between the ratings given by the
three annotators is 0.79. Note that randomly selecting one
of the coders when their agreement is high or averaging the
ratings of multiple coders are both valid approaches for ana-
lyzing behavioral data. Despite the high agreement between
DS16 coders, our past experience with engagement coding
revealed that often coders use the full range of the coding
scale differently. Therefore, similar to the previous studies
with MM [6, 7], we analyzed the results for each annotator
separately and found the same trends for all three coders.
Hence, we present the results for one coder in the remainder
of the section to avoid redundancy.

Overall, children in the SN group had significantly higher
engagement scores (M = 4.90,SD = 0.73) than children in
the NS group (M = 4.52,5D = 0.67), t(158) = —3.4316,p <
0.001 (see Figure 5(a)). Given that the only difference be-
tween the two conditions was the order in which children
played with the two versions of the robot, we further in-
vestigated these results by conducting a two-way ANOVA
considering the version of Sammy (synchronizing vs. non-
synchronizing) collapsed across conditions, and the order
of the games (first two rounds vs. second two rounds) as
within-subjects factor. The analysis of variance showed a
significant main effect for order, F(1,156) = 21.086,p <
0.001, but no significant main effect for the version of the
robot (synchronizing vs. non-synchronizing), F(1,156) =
2.06,p = 0.51. We also found a significant interaction ef-
fect between robot version and the order of the rounds,



Table 2: Percentage of correlation achieved using entrainment (Sammy follows child) in DS16. Values marked
with asterisks are statistically different from zero (p < 0.001)

Condition SN NS -

Robot behavior | Synch. Non-Synch. | Non-synch. Synch. | All Synch. All Non-synch.
#Samples 474 634 482 435 909 1116

< FO 66.25* 6.31 3.14 68.08* 66.99* 5.06

"~ Loudness | 36.39* -0.00 5.69 33.90* 32.17* -2.43

Table 3: Percentage of correlation for the child following Sammy in DS16. Values marked with asterisk are
statistically different from zero (p < 0.01)

Condition SN NS -
Robot behavior | Synch. Non-Synch. | Non-synch. Synch. | All Synch. All Non-synch.
#Samples 681 793 661 648 1329 1454
< FO 40.38%* 9.53% 5.80 23.35% 32.57* 8.01*
= Loudness | 32.72* 14.04%* 2.30 20.75% 27.27* 9.02%
* *
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Figure 5: Engagement scores of children in DS16 from multiple views. Asterisks denote significance (p < 0.05).

F(1,156) = 13.307,p < 0.001. As depicted in Figure 5(b),
while children who began playing with the synchronizing
version of Sammy sustained their engagement levels when
switching to the non-synchronizing games, children who be-
gan playing with the non-synchronizing version of Sammy
showed lower engagement when playing in this mode and
ended their session in a less engaged state. This result
strengthens the findings obtained in the prosodic feature
correlation showing that when first exposed to a synchro-
nizing robot, children maintain their behavior for some time
even when they then interact with a non-adaptive robot.
Finally, since previous research on child developmental
theory suggests that language interactions can be affected
by age differences [21], we looked at potential age effects in
our data. We divided children into two age groups based on
their developmental stage [21]: less than 7 years old, and
greater than or equal to 7 years old. We have 19 children
in the younger age group and 21 children in the older age
group. The average engagement scores in these four condi-
tions is given in Figure 5(c). A two-way ANOVA revealed
significant differences in engagement between the NS and
SN experimental groups, F(1,156) = 10.209,p = 0.0017,
and a significant interaction effect between condition and
age, F'(1,156) = 17.766,p < 0.0001. Pairwise comparisons

revealed a significant age difference between SN and NS con-
ditions among the older age group (p < 0.0001), but no
significant differences for the younger children (p = 0.892).

6. CONCLUSION

In this paper, we proposed a framework to create syn-
chronous verbal behavior for a social robot, Sammy, playing
a fast-paced, speech-based game with a child. Analysis of
the gameplay of 86 children in 2015 showed a strong correla-
tion between the acoustic characteristics of children playing
in pairs. Using the data from those children, we built a
DBN model that learns the joint representation of prosodic
speech features in those child-child pairs. In real-time play of
the game with Sammy as co-player, we measure the prosodic
speech features and keyword duration from the child, use the
DBN to predict synchronous prosodic values for Sammy, and
select the nearest match for the prosodic features and key-
word duration from a large but fixed space of possible utter-
ances. To test the performance of the method, we recorded
data from 40 new children, each of whom played with both
a synchronizing and non-synchronizing version of Sammy,
balanced for order. We analyzed their gameplay with sub-
jective and objective metrics, both of which show that the
the order of conditions matters. Objectively, children who



started with the synchronizing version of Sammy showed
more synchronous behavior, even in the non-synchronizing
levels, compared to the children who started with the non-
synchronizing version. Subjectively, children who started
with the synchronizing version ended the session with higher
engagement levels compared with those that started with
the non-synchronizing version of the robot. Moreover, the

results showed an age effect, demonstrating that most of the
engagement result was due to differences in the older chil-
dren under the two order conditions. It remains for future
work to see whether entrainment of the same paralinguistic
features in other interaction scenarios will produce the same
patterns of behavior and enjoyment.
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