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Abstract

We study a mini-batch diversification scheme for
stochastic gradient descent (SGD). While classi-
cal SGD relies on uniformly sampling data points
to form a mini-batch, we propose a non-uniform
sampling scheme based on the Determinantal
Point Process (DPP). The DPP relies on a sim-
ilarity measure between data points and gives low
probabilities to mini-batches which contain redun-
dant data, and higher probabilities to mini-batches
with more diverse data. This simultaneously bal-
ances the data and leads to stochastic gradients
with lower variance. We term this approach Di-
versified Mini-Batch SGD (DM-SGD). We show
that regular SGD and a biased version of stratified
sampling emerge as special cases. Furthermore,
DM-SGD generalizes stratified sampling to cases
where no discrete features exist to bin the data into
groups. We show experimentally that our method
results more interpretable and diverse features in
unsupervised setups, and in better classification
accuracies in supervised setups.

1 INTRODUCTION
Stochastic gradient descent (SGD) is one of the most im-
portant algorithms for scalable machine learning [7, 36, 27].
SGD optimizes an objective function by successively fol-
lowing noisy estimates of its gradient based on mini-batches
from a large underlying dataset. We usually assure that this
gradient is unbiased, meaning that the expected stochastic
gradient equals the true gradient. When combined with a
suitably decreasing learning rate schedule, the algorithm
converges to a local optimum of the objective [7].

Often we are not interested in learning an unbiased estimator
of the gradient, but are rather willing to introduce some
bias. There are many reasons for why this might be the
case. First, biased SGD schemes such as momentum [34],
iterate averaging [40], or preconditioning [9, 16, 43, 46] may
reduce the stochastic gradient noise or ease the optimization

problem, and therefore often lead to faster convergence.
Another reason is that we may decide to actively select
samples based on their relevance or difficulty levels such
as boosting [10], or because we believe that our dataset is
in some respect imbalanced [12]. In this paper, we propose
and investigate a biased mini-batch subsampling scheme for
imbalanced data.

Real-world data sets are naturally imbalanced. For instance,
the sports topic appears more often in the news than biology;
the internet contains more images of young people than of
senior people, and Youtube has more videos of cats than
of bees or ants. Aiming to maximize the probability of
generating such training data, machine learning models will
refine the dominant information with redundancy but ignore
the important but scarce data. For example, a model trained
on Youtube data might be very sensitive to different cats but
unable to recognize ants. We may therefore decide to try
to learn on a more balanced data set by actively selecting
diversified mini-batches.

The currently most common tool for mini-batch diversifi-
cation is stratified sampling [30, 48]. In this approach, one
groups the data into a finite set of strata based on discrete or
continuous features such as a label or cluster assignment. To
re-balance the data set, the data can then be subsampled such
that each stratum occurs with equal probability in the mini-
batch (in the following, we refer to this method as biased
stratified sampling). Unfortunately, the data are not always
amenable to biased stratified sampling because discrete fea-
tures may not exist, or the data may not be unambiguously
clustered. Instead of subsampling based on discrete strata,
it would be desirable to diversify the mini-batch based on a
soft similarity measure between data points. As we show in
this paper, this can be achieved using Determinantal Point
Processes (DPPs) [19].

The DPP is a point process which mimics repulsive interac-
tions between samples. Being based on a similarity matrix
between the data points, a draw from a DPP yields diversi-
fied subsets of the data. The main contribution of this paper
is using this mechanism to diversify the mini-batches in
stochastic gradient-based learning and analyzing this setup



theoretically. In more detail, our main achievements are:

• We present a mini-batch diversification scheme based
on DPPs for stochastic gradient algorithms. This ap-
proach requires a similarity measure among data points,
which can be constructed using low-level features of
the data. Since the sampling strategy is independent of
the learning objective, diversified mini-batches can be
precomputed in parallel and reused for different learn-
ing tasks. Our approach applies to both supervised and
unsupervised models.

• We prove that our method is a generalization of strat-
ified sampling and i.i.d. mini-batch sampling. Both
cases emerge for specific similarity kernels of the data.

• We theoretically analyze the conditions under which
the variance of the DM-SGD gradient gets reduced.
We also give an unbiased version of DM-SGD which
optimizes the original objective without re-balancing
the data.

• We carry out extensive experiments on several models
and datasets. Our approach leads to faster learning
and higher classification accuracies in deep supervised
learning. For topic models we find that that the result-
ing document features are more interpretable and are
better suited for subsequent supervised learning tasks.

Our paper is structured as follows. In Section 2 we list
related work. Section 3 discusses our main concepts of a
diversifed risk, and discuses the DM-SGD method. Section
4 discusses theoretical properties of our approach such as
variance reduction. Finally, in Section 5, we give empirical
evidence that our approach leads to higher classification
accuracy and better feature extractions than i.i.d. sampling.

2 RELATED WORK

We revisit the most relevant prior work based on the fol-
lowing aspects. Diversification and Stratification comprises
methods which aim at re-balancing the empirical distribu-
tion of the data. Variance reduction summarizes stochastic
gradient methods that aim at faster convergence by reducing
the stochastic gradient noise. Finally, we list related appli-
cations and extensions of determinantal point processes.

Diversification and stratification. Since our method sug-
gests to diversify the mini-batches by of non-uniform sub-
sampling from the data, it relates to stratification methods.

Stratification [30, 29] assumes that the data decomposes
into disjoint sub-datasets, called strata. These are formed
based on certain criteria such as a class-label. Instead of
uniformly sampling from the whole dataset, each stratum is
sub-sampled independently, which reduces the variance of
the estimator of interest.

Stratified sampling has been suggested as a variance reduc-
tion method for stochastic gradient algorithms [11, 48]. If

one subsamples the same number of data points from ev-
ery stratum to form a mini-batch as in [48], one naturally
balances the training procedure. This approach was also
used in [1]. Our work relates closely to this type of biased
stratified sampling. It is different in that it does not rely on
discrete strata, but only requires a measure a measure of
similarity between data points to achieve a similar effect.
This applies more broadly.

Variance reduction. Besides re-balancing the dataset, our
approach also reduces the variance of the stochastic gra-
dients. Several ways of variance reduction of stochastic
gradient algorithms have been proposed, an important class
relying on control variates [26, 32, 35, 44, 38]. A second
class of methods relies on non-uniform sampling of mini-
batches [8, 11, 33, 39, 48, 49]. None of these methods rely
on similarity measures between data points.

Our approach is most closely related to clustering-based
sampling (CBS) [11] and stratified sampling (StS) [48].
StS applies stratified sampling to SGD and builds on pre-
specified strata. For every stratum, the same number of
data points are uniformly selected, and then re-weighted
according to the size of the stratum to make the sampling
scheme un-biased. CBS uses a similar strategy, but does
not require a pre-speficied set of strata. Instead, the strata
are formed by pre-clustering the raw data with k-means.
(Thus, if the data are clustered based on a class label, CBS
is identical to StS.) The problem is that the data are not
always amenable to clustering. Second, both StS and CBS
ignore the within-cluster variations between data points. In
contrast, our approach relies on a continuous measure of
similarity between samples. We furthermore show that it is
a strict generalization of both setups for particular choices
of similarity kernels.

Determinantal point processes. The DPP [19, 25] has
been proposed [20, 22, 45] and advanced [4, 23, 24] in the
machine learning community in the recent years. It has been
applied in subset sampling [18, 24] and results filtering [22].

The DPP has also been used as a diversity-enhancing prior
in Bayesian models [20, 45]. In big data setups, the data
may overwhelm the prior such that the strength of the prior
has to scale with the number of data points; introducing
a bias. The approach is furthermore constrained to hierar-
chical Bayesian models, while our approach applies to all
empirical risk minimization problems.

Recently, efficient algorithms have been proposed to make
sampling using the DPP more scalable. In the traditional for-
mulation, mini-batch sampling costs O(Nk3), with an initial
fixed cost of diagonalizing the similarity matrix [19], where
N is the size of the data and k is the size of the mini-batch.
Recent scalable versions of the DPP rely on core-sets and
low-rank approximations and scale more favorably [4, 24].
These versions were used in our large-scale experiments.



3 METHOD
Our method, DM-SGD, uses a version of the DPP for mini-
batch sampling in stochastic gradient descent. We show
that this balances the underlying data distribution and si-
multaneously accelerates the convergence due to variance
reduction. We briefly revisit DPP first, and then introduce
our mini-batch diversification method. Theoretical aspects
are then discussed in Section 4.

3.1 DETERMINANTAL POINT PROCESSES

A point process is a collection of points randomly located
in some mathematical space. The most prominent example
is the Poisson process on the real line [17], which models
independently occurring events. In contrast, the DPP [19,
25] models repulsive correlations between these points.

In this paper, we restrict ourselves to a finite set of N points.
Denote by L 2 RN⇥N a similarity kernel matrix between
these points, e.g. based on spatial distances or some other
criterion. L is real, symmetric and positive definite, and
its elements Li j are some appropriately defined measure of
similarity between the ith and jth data. The DPP assigns
a probability to subsampling any subset Y of {1, . . . ,N},
which is proportional to the determinant of the sub-matrix
LY of L which indexes the subset,

P(Y ) =
det(LY )

det(L+ I)
µ det(LY ). (1)

For instance, if Y = {i, j} consists of only two elements,
then P(Y ) µ LiiL j j �Li jL ji. Because Li j and L ji measure
the similarity between elements i and j, being more similar
lowers the probability of co-occurrence. On the other hand,
when the subset is very diverse, the determinant is bigger
and correspondingly its co-occurrence is more likely. The
DPP thus naturally diversifies the selection of subsets.

In this paper, we propose to use the DPP to diversify mini-
batches. In practice, the mini-batch size is usually con-
strained by empirical bounds or hardware restrictions. In
this case, we want to use DPP conditioned on a given size
k. Therefore, a slightly modified version of the DPP is
needed, which is called k-DPP [18]. It assigns probabilities
to subsets of size k,

Pk
L(Y ) =

det(LY )

Â|Y 0|=k det(LY 0)
. (2)

Apart from conditioning on the size of the subset of
points, the k-DPP has the same diversification effect as
the DPP [18]. In order to have a fixed mini-batch size we
use the k-DPP in this work.

3.2 MINI-BATCH DIVERSIFICATION

The diversifying property of the k-DPP makes it well-suited
to diversify mini-batches. We first discuss our learning
objective—the diversified risk. We then introduce our algo-
rithm and qualitatively discuss its properties.

Sampling with k-DPP
�
�
�

 
 
 

Sampling randomly
�
�
�

 
 
 

Figure 1: Sampling mini-batches using the k-DPP. For an imbal-
anced dataset, our method results in diversified mini-batches.

Expected, empirical, and diversified risk. Many prob-
lems in machine learning amount to minimizing some loss
function `(x,q) which both depends on a set of parameters q
and on data x. In probabilistic modeling, ` could be the neg-
ative logarithm of the likelihood of a probabilistic model, or
a variational lower bound [6, 14]. We often thereby assume
that the data were generated as draws from some under-
lying unknown data-generating distribution pdata(x), also
called the population distribution. To best generalize to un-
seen data, we would ideally like to minimize this function’s
expectation under pdata,

J(q) = E
x⇠pdata

[`(x;q)] (3)

This objective function is also called expected risk [7]. Since
pdata(x) is unknown and we believe that our observed data
are in some sense a representative draw from the population
distribution, we can replace the expectation by an expecta-
tion over the empirical distribution of the data pemp, which
leads to the empirical risk [7],

Ĵ(q) = E
x⇠pemp

[`(x;q)] = 1
N

N

Â
i=1

`(xi,q). (4)

A typical goal in machine learning is not to minimize the
empirical risk with high accuracy, but to learn model pa-
rameters that generalize well to unseen data. For every data
point in a test set, we wish our model to have high predictive
accuracy. If this test set is more balanced than the training
set (for instance, because it contains all classes to equal
proportions in a classification setup), we would naturally
like to train our model on a more balanced training set than
the original one without throwing away data. In this work,
we present a systematic way to achieve this goal based on
biased subsampling of the training data. We term the collec-
tion of all samples generated from biased subsampling the
balanced dataset.

To this end, we introduce the diversified risk, where we
average the loss function over diversified mini-batches~x of
size k,

J⇤(q) = 1
k E
~x⇠k�DPP

[`(~x;q)], (5)

Due to the repulsive nature of k-DPP, similar data points
are less likely to co-occur in the same draw. Thus, data
points which are very different from the rest are more likely
to be sampled and obtain a higher weight, as illustrated in
Figure 2 (e).

The diversified risk depends both on the mini-batch size and
on the similarity kernel L of the data. A more theoretical
analysis of the diversified risk is carried out in Section 4.
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Figure 2: Visualization of different non-uniform data subsampling schemes on toy data. Panel (a) shows a homogeneous distribution
of data. We assume that we only observe an imbalanced subset, shown in panel (b). Panels (c), (d), (e) demonstrate different biased
sampling methods that aim at restoring balance in the data. Thicknesses of data points thereby indicate their sampling frequency. Biased
stratified sampling (c) relies on dividing the feature space vertically along certain dimensions, whereas pre-clustering (d) defines the strata
as clusters obtained from k-means [11] (we used k = 4). The black diamonds show the cluster centers and data are colored with respect to
their cluster membership. Panel (e) shows the results using the k-DPP, using an RPF kernel of spatial distances as similarity measure
between data points. In this example, the k-DPP best restores the balance of the original data set.

Algorithm. Our proposed algorithm directly optimizes the
diversified risk in Eq. 5. To this end, we propose SGD
updates on diversified mini-batches of fixed size k,

qt+1 = qt �rt
1
k Â

i2B
—`(q ,xi), B ⇠ k�DPP. (6)

Above, B ⇢ {1, . . . ,N} is a collection of k indices, drawn
from the k-DPP. In every stochastic gradient step, we thus
sample mini-batches from the k-DPP and carry out an update
with decreasing learning rate rt .

Sampling from the k-DPP first requires an eigendecomposi-
tion of its kernel. This decomposition can also be approx-
imated and has to be computed only once for one dataset.
Drawing a sample then has the computational complexity
O(Nk3), where k is the mini-batch size, which is much more
efficient since k is commonly small. This approach is briefly
summarized in Algorithm 1; details on the sampling pro-
cedure are given in the supplementary material. For more
details, we refer to [19] and to [4, 24] for more efficient
sampling procedures.

Algorithm 1 DM-SGD
Input: Data X , mini-batch size k, eigendecomposition
{(vn,ln)}N

n=1 of similarity matrix K.
for t = 0 to MaxIter do

Sample a mini-batch using the k-DPP
Sample k eigenvectors V using eigenvalues;
Sample mini-batch ~x of size k using V . (See supple-
ment.)
Update parameters
qt+1 = qt +rtg⇤(qt ;~x) (g* is the gradient estimate)

end

Stochastic Variational Inference (SVI) employs SGD for
training probabilistic graphical models, such as Latent
Dirichlet Allocation (LDA). Every SVI update involves an
inner loop. Algorithm 2 shows an application of DM-SGD
to SVI for LDA [6]. We thus term it DM-SVI.

Algorithm 2 DM-SVI
We adopt the notation from [13].
for t = 0 to MaxIter do

Sample a mini-batch using the k-DPP;
Update variational parameters;
for j = 0 to Mini-batch Size do

Update local variational parameters ( e.g. f and l
for LDA) for mini-batch.

end
Compute the intermediate global parameters as if the
mini-batch is replicated D

S times.
( e.g. l̃kw = h + D

S ÂS
s=1 ntwftwk for LDA)

Update the current estimate of the global variational
parameters with rt = (t0 + t)�k.
l = (1�rt)l +rt l̃

end

Variance reduction and connections to biased stratified
sampling. Dividing the data into different strata and sam-
pling data from each stratum with adjusted probabilities may
reduce the variance of SGD. This insight forms the basis
of stratified sampling [48], and the related pre-clustering
based method [11]. As we will demonstrate rigorously in
the next section, our approach also enjoys variance reduc-
tion but does not require an artificial partition of the data
into clusters.

For many models, the gradient varies smoothly as a func-
tion of the data. Subsampling data from diversified regions
in data space will therefore decorrelate the gradient con-
tributions. This, in turn, may reduce the variance of the
stochastic gradient. To some degree, methods such as bi-
ased stratified sampling or pre-clustering sample data from
diversified regions, but ignore the fact that gradients within
clusters may still be highly correlated. If the data are not
amenable to clustering, this variance may be just as large as
the inter-cluster variance. Our approach does not rely on the
notion of clusters. Instead, we have a continuous measure of



similarity between samples, given by the similarity kernel.
This applies more broadly.

In Figure 2, we investigate how well our subsampling proce-
dure using the k-DPP allows us to recover an original distri-
bution of data from which we only observe an imbalanced
subset. Panel (a) shows the original (uniform) distribution
of data points, and (b) shows the observed data set which
we use to re-estimate the original dataset. While biased
stratified sampling (c) or pre-clustering based on k-means
(d) need an artificial way of dividing the data into finitely
many strata and re-balance their corresponding weights,
our approach (e) relies on a continuous similarity measure
between data and takes into account both intra-strata and
inter-strata variations.

Computational overhead.Sampling from the k-DPP im-
plies a computational overhead over classical SGD. Regard-
ing the overall runtime, the benefits of the approach there-
fore come mainly into play in setups where each gradient
update is expensive. One example is stochastic variational
inference for models with local latent variables. For exam-
ple, in LDA, the computational bottleneck is to update the
per-document topic proportions. The time spent on sam-
pling a mini-batch using the k-DPP is only about 10% of the
time to infer these local variables and estimate the gradient
(See Table 1 in Section 5). Spending this tiny overhead on
actively selecting training examples is well invested as the
resulting stochastic gradient has a lower variance.

Since the sampling procedure is independent of the learning
algorithm, we can parallelize it or even draw the samples as
a pre-processing step and reuse them for different hyperpa-
rameter settings. Moreover, there are approximate versions
of k-DPP sampling which are scalable to big datasets [4, 23].
In this paper, we use the fast k-DPP [23] in our large-scale
experiments (Section 5.3).

4 THEORETICAL CONSIDERATIONS

In this section, we give the theoretical foundation of the DM-
SGD scheme. We first prove that biased stratified sampling
and pre-clustering emerge as special cases of our algorithm
for particular choices of the kernel matrix L. We then prove
that the diversified risk of DM-SGD is a re-weighted vari-
ant of the empirical risk, where the weights are given by
the marginal likelihoods of the k-DPP (we also present an
unbiased DM-SGD scheme which approximates the true
gradients, but which performs less favorably in practice).
Last, we investigate under which circumstances DM-SGD
reduces the variance of the stochastic gradient.

Notation. For what follows, let mi 2 {0,1} denote a vari-
able which indicates whether the ith data point was sampled
under the k-DPP. Furthermore, let E[·] = Em⇠k�DPP[·] al-
ways denote the expectation under the k-DPP. This lets us
express the expectation F(x) = Âi f (xi) which depends ad-

ditively on the data points xi as

E[ÂN
i=1mi f (xi)]⌘ E

x⇠k�DPP
[F(x)] (7)

Next, we introduce short hand notations for first and second
moments. Denote the marginal probability for a point xi
being sampled as

bi ⌘ E[mi], (8)
which has an analytic form and can be computed efficiently.
We also introduce the correlation matrix

Ci j =
E[(mi �bi)(m j �b j)]

E[mi]E[m j]
=

E[mim j]

bib j
�1. (9)

In contrast to minibatch SGD where E[mim j] = E[mi]E[m j]
and hence Ci j = 0, this is no longer true under the k-DPP.
Instead, the correlation can be both negative (when data
points are similar) and even positive (when data points are
very dissimilar).

Lastly, let g(q ,x) = ÂN
i=1 g(q ,xi) denote the gradient of the

empirical risk, which is the batch gradient, and g(q ,xi) its
individual contributions from the data xi.

We first prove that our algorithm captures two important
limiting cases, namely (biased) stratified sampling and pre-
clustering.

Proposition 1. Biased stratified sampling (StS) [48], where
data from different strata are subsampled with equal proba-
bility, is equivalent to DM-SGD with a similarity matrix L,
defined as a block-diagonal matrix with

Li j =

(
1 Hi = Hj

0 Hi 6= Hj,
(10)

where Hi denotes the label for the stratum of data point i.

Proof. It is enough to show that a draw A from the k-DPP
which has multiple data points with the same strata assign-
ment has probability zero.

Let A = a[ ā, where a is a collection of indices which come
from the same stratum, and ā is its disjoint complement.
Because of the block-structure of L, we have that

det(LA) = det(La)det(Lā).

However, det(La) = 0 because it is a matrix of all-ones.
Therefore, det(LA) = 0, and hence A has zero probability
under the k-DPP. Therefore, every draw from the k-DPP
with Li j defined as above contains at most one data point
from each stratum. When k is the same as the number of
classes, we recover StS. If k is smaller than the number of
classes, we provide a direct generalization of StS.

Proposition 2. Pre-clustering [11] results as a special case
of DM-SGD, with Li j = 1 if the data points i and j are
assigned to the same cluster, and otherwise Li j = 0.

It is furthermore simple to see that regular minibatch SGD
results from DM-SGD when choosing the identity kernel.



Next, we analyze the objective function of DM-SGD. We
prove that the diversified risk (Eq. 5) is given by a re-
weighted version of the empirical risk (Eq. 4) of the data.

Proposition 3. The diversified risk (Eq. 5) can be expressed
as a re-weighted empirical risk with the marginal k-DPP
weights bi,

J⇤(q) = 1
k

N

Â
i=1

bi `(xi,q).

As bi ! k/N in case of a trivial similarity kernel L = I, this
quantity just becomes the empirical risk.

Proof. We employ the indicators mi defined above:

k J⇤(q) = E
x⇠kDPP

[`(x;q)] = E[
N

Â
i=1

mi`(xi;q)]

=
N

Â
i=1

E[mi]`(xi;q) =
N

Â
i=1

bi`(xi;q).

The following corollary allows us to construct an unbiased
stochastic gradient based on DM-SGD in case we are not
interested in re-balancing the population.

Proposition 4. The following SGD scheme leads to an
unbiased stochastic gradient:

qt+1 = qt �rt
1
k Â

i2B

1
bi

—`(q ,xi), B ⇠ kDPP. (11)

This is a simple consequence of the identity
E[ÂN

i=1
mi
bi

g(q ;xi)] = ÂN
i=1E[

mi
bi
]g(q ;xi) = g(q ,x).

Finally, we investigate under which circumstances the DM-
SGD gradient has a lower variance compared to simple mini-
batch SGD on the diversified risk. To this end, consider the
gradient components g(xi,q), g(xi,q) of data points i and j,
respectively, as well as their correlation Ci j under the k-DPP.
A sufficient condition for BN-SGD to reduce the variance is
given as follows.

Theorem 1. Assume that for all data points xi and x j and
for all parameters q in a region of interest, the scalar product
g(xi,q)>g(x j,q) is always positive (negative) whenever the
correlation Ci j is negative (positive), respectively, i.e.

8i6= j : Ci j g(xi,q)>g(x j,q)< 0. (12)

Then, DM-SGD has a lower variance than SGD.

Remark. The sufficient conditions outlined in Theorem 1
are very strong, but its proof provides us with valuable
insights of why variance reduction occurs.

Proof. To begin with, define

gF(q ,x) = 1
k ÂN

i=1bi g(q ,xi), (13)

g⇤(q ,x) = 1
k ÂN

i=1mi g(q ,xi), (14)

where g⇤ is the DM-SGD gradient and gF = E[g⇤] is the full
gradient of the diversified risk.

We denote the difference between the expected and stochas-
tic gradient as

Dg = g⇤ �gF = 1
k ÂN

i=1(bi �mi)g(q ,xi), (15)

By construction, this quantity has expectation zero. We are
interested in the trace of the stochastic gradient covariance,

Var(g⇤) = Tr(Cov(g⇤)) = E[Dg>Dg]. (16)

This quantity can be expressed as

Var(g⇤) =
1
k2

N

Â
i, j=1

E[(mi �bi)(m j �b j)]| {z }
E[mim j ]�bib j

g(xi,q)>g(x j,q)

We can furthermore compute

E[mim j] = E[m2
i ]di j +E[mim j](1�di j)

= E[mi]di j +(Ci j +1)bib j(1�di j),

where di j is the Kronecker symbol (we used m2
i = mi).

Collecting all terms, the variance can be written as

Var(g⇤) =
1
k2

N

Â
i=1

(bi �b2
i ) ||g(xi,q)||22

+
1
k2 Â

i 6= j
Ci jbib jg(xi,q)>g(x j,q).

The first term is just the variance of regular mini-batch
SGD, where we sample each data point with probability
proportional to bi, which also optimizes the diversified risk.
This term is always positive because bi < 1 and thus bi > b2

i .

The second term can be both positive and negative. By a
clever choice of similarity kernel and resulting correlation
function Ci j (as defined in Eq. 9), the second term may
therefore reduce the variance. We immediately see that this
condition exactly corresponds to Eq. 12. This proves our
claim.

Discussion of Theorem 1. If the similarity kernel L relies
on spatial distances, nearby data points xi and x j have a neg-
ative correlation Ci j under the k-DPP. However, if the loss
function is smooth, g(xi,q) and g(x j,q) tend to align (i.e.
have a positive scalar product). Eq. 12 is therefore naturally
satisfied for these points. Ci j can also be positive: since
some combinations of data points are less likely to co-occur,
others must be more likely to co-occur. Since these points
tend to be far apart, it is reasonable to assume that their gra-
dients show no tendency to align. It is therefore plausible to
assume that for these points, Eq. 12 also applies1.

To summarize, if the condition in Eq. 12 is met, we can guar-
antee variance reduction relative to mini-batch SGD, and
we have given arguments why it is plausible that these are
met to some degree when using DM-SGD with a distance-
dependent similarity kernel. In our experimental section we
show that DM-SGD has a faster learning curve, which we
attribute to this phenomenon.

1We only need to assure that the negative contributions out-
weigh the positive ones to see variance reduction.



5 EXPERIMENTS
We evaluate the performance of our method in different set-
tings. In Section 5.1 we demonstrate the usage of DM-SGD
for Latent Dirichlet Allocation (LDA) [6], an unsupervised
probabilistic topic model. We show that the learned diver-
sified topic representations are better suited for subsequent
text classification. In Section 5.2 we evaluate the supervised
scenario based on multinomial (softmax) logistic regression
with imbalanced data. We compare against stratified sam-
pling, which emerges naturally in this example. In section
5.3 we show that our method also maintains performance on
the balanced MNIST data set, where we tested convolutional
neural networks. In all the experiments, we pre-sample the
mini-batch indices using the k-DPP implementation from
[19] for small datasets, and from [23] for big datasets. In
this way, sampling is treated as a pre-scheduling step and
can easily be parallelized. We found that our approach finds
more diversified feature representations (in unsupervised se-
tups) and higher predictive accuracies (in supervised setups).
We also found that the k-DPP converges within fewer passes
through the data compared to standard minibatch sampling
due to variance reduction.

5.1 TOPIC LEARNING WITH LDA

We follow Algorithm 2 for LDA. Firstly, we demonstrate the
performance of DM-SVI on synthetic data with LDA. We
show that by balancing our mini-batches, we find a much
better recovery of the topics that were used to generate
the data. Second, we use a real-world news dataset. We
demonstrate that we can learn more diverse topics that are
also better features for text classification tasks.

In this setting, stratified sampling is not applicable since
there is no discrete feature such as a class label available.
With only word frequencies available, no simple criterion
can be used to divide the data into meaningful strata.

5.1.1 SYNTHETIC DATA

We generate a synthetic dataset (shown in the supplementary
material) following the generative process of LDA with a
fixed global latent parameter (the graphical topics). We
choose distinct patterns as shown in Figure 3 (a), where
each row represents a topic and each column represents a
word. To generate an imbalanced data set, we use different
Dirichlet priors for the per document topic distribution q .
300 documents are generated with prior (0.5 0.5 0.01 0.01
0.01); 50 with prior (0.01 0.5 0.5 0.5 0.01) and 10 with prior
(0.01 0.01 0.01 0.5 0.5). Hence, the first two topics are used
very often in the corpus. Topic 3 and 4 are shown a few
times and topic 5 appears very rarely.

We fit LDA to recover the topics of the synthetic data us-
ing traditional SVI and our proposed DM-SVI respectively.
Here, the raw data occurence x is used to construct the
similarity matrix L = xxT . We check how well the global
parameters are recovered. Fully recovered latent variables

(a) Ground Truth (b) Est w. SVI LDA (c) Est w. DM-SVI

Figure 3: Per topic word distribution for the synthetic data. Each
row presents a topic and each column presents a word. (a) shows
the ground truth with which the synthetic data is generated using
LDA. (b) shows the estimation of this latent variable with LDA
using traditional stochastic variational inference (SVI). (c) shows
the estimation of this latent variable with DM-SVI

acq crude earn grain insts m-fx ship trade
0

0.2

0.4

0.6

Figure 4: The frequency of class labels of the training dataset (in
blue) and of the balanced dataset (in yellow). While explicit class
label information is withheld, the algorithm partially balances class
contributions.

indicate that the model is able to capture its underlying
structure of the data. Figure 3 (b) shows the estimated per
topic words distribution with SVI and Figure 3 (c) shows
the result with our proposed DM-SVI.

In Figure 3 (b), we see that the first three topics are recovered
using traditional SVI. Topic four is roughly recovered but
with information from topic five mixed in. The last topic is
not recovered at all, instead, it is a repetition of the first topic.
This shows the drawback of the traditional method: when
the data is not balanced, the model creates redundant topics
to refine the likelihood of the dense data but ignores the
scarce data even when they carry important information. In
Figure 3 (c), we see that all the topics are correctly recovered
thanks to the balanced dataset.

5.1.2 R8 NEWS DATA EXPERIMENT

We also evaluate the effect of DM-SVI on the Reuters news
R8 dataset [3]. This dataset contains eight classes of news
with an extremely imbalanced number of documents per
class, as shown in Figure 4 (a). To measure similarities
between documents, we represent each document with a
vector x of the tf-idf [37] scores of each word in the docu-
ment. Then define an annealed linear kernel L(xi,x j) = xr

i xr
j

with parameter r = 0.1, which is more sensitive to small fea-
ture overlap. We run LDA with SVI and DM-SVI with one
effective pass through the data, where we set the mini-batch
size to 80 and use 30 topics.

We first compare the frequencies at which documents with
particular labels were sub-sampled. While Figure 4 shows
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Figure 5: Confusion matrix for text classification based on LDA
features obtained from SVI (a) and the proposed DM-SVI (b).
DM-SVI features lead to better accuracies.
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Figure 6: First 2 principle components of topic word distributions.
DM-SVI topic vectors (b) are more diverse compared to SVI (a).

the actual frequency of these classes in the original data
set compared with the frequency of these classes over the
balanced dataset (a collection of sampled mini-batches using
the k-DPP). We can see that the number of documents is
more balanced among different classes.

To demonstrate that DM-SVI leads to a more useful topic
representation, we classify each document in the test-set
based on the learned topic proportions with a linear SVM.
The global variable (per-topic word distribution) is only
trained on the training set. The resulting confusion matrices
are shown in Figure 5 using traditional SVI and DM-SVI
respectively. With traditional SVI, the average performance
over 8 classes is 82.11%; the total accuracy (number of cor-
rectly classified documents over number of test documents)
is 94.11%. With DM-SVI, the average performance over 8
classes is 87.24% and the total accuracy is 94.7%.

Thus the overall classification performance is improved
using DM-SVI features, and especially the performance on
the classes with few documents (such as "grain" and "ship")
is improved significantly.

We also visualize the first two principal components (PC)
of the the global topics in Figure 6. In traditional SVI,
many topics are redundant and share large parts of their
vocabulary, resulting in a single dense cluster. In contrast,
we see that the topics in DM-SVI are more spread out. In
this regard, DM-SVI achieves a similar effect as when using
diversity priors as in [20] without the need to grow the prior
with the data. The top words from each topic are shown
in the appendix, where we present more evidence that the

Size k = 10 k =30 k=50 k=80

Relative cost 0.114% 1.097% 3.191% 8.971%

Table 1: LDA on the R8 dataset. Relative cost of mini-batch
sampling as a fraction of the cost of a gradient update. Different
values of mini-batch size k are shown.
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Figure 7: The frequency of data in each class of the training dataset
and of the balanced dataset using different weights w (Eq. 17).
There are 102 classes of flowers in total and each bar presents the
percentage of data belongs to one class. Minibatch size 50 is used
as an example here for (b) and (c).

topics learned by DM-SVI are more diverse.

The relative costs of sampling per iteration for LDA is shown
in Table 1. Because every local update is expensive, the
relative overhead of mini-batch sampling is small. More
details are given in the appendix.

5.2 MULTICLASS LOGISTIC REGRESSION

In this section, we demonstrate DM-SGD on a fine-grained
classification task. The Oxford 102 flower dataset [31, 41]
is used here for evaluation.

Many datasets in computer vision are balanced even though
the true collected dataset is extremely imbalanced. The true
reason is that the performance of machine learning models
usually suffer from imbalanced training data. One example
is the Oxford 102 flower dataset which contains 1020 images
in the training set with 10 images per class. However, in
the test set, 6149 images are available with high imbalance.
In this experiment, we make the learning task harder. We
use the original testing set for training and use the original
training set for testing. This setting demonstrates the real
life scenario where we only can collect data with bias but
wish the model to perform well in all different situations.
Off-the-shelf CNN features [41] are used in this experiment.
A pre-trained VGG16 network [42] is used for the feature
extraction. We use the first fully connected layer as features,
since [5] shows that this layer is most robust.

The similarity kernel L of the k-DPP was constructed as
follows. We chose a linear kernel L = FF>, where F is
a weighted concatenation of the fc1 features Xf c1 and the
labels a one-hot-vector representation of the class label H,

F = [(1�w)Xf c1 wH], 0  w  1. (17)

This kernel construction enables the population to be bal-
anced both among classes and within classes. When w is
large, the algorithm focuses more on the class labels. When
w is small, balancing is performed mostly based on the fea-
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10 0 10 1 10 2

Num of Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
T

es
t A

cc
ur

ac
y

w=0.9
w=0.7
w=0.5
w=0.3
w=0.1
w=0
rand

(d) k=150, Top3: 0.7, 0.5, 0.9;
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Figure 8: Test accuracy as a function of training epochs on the
Oxford 102 multi-class classification task. We show DM-SGD for
different values of w, with w = 1 being biased stratified sampling
(see Eq. 17 and the discussion below). The plot caption indicates
the batch size k and the three best performing values of w. ’Rand’
indicates regular SGD sampling. We listed the final test accuracy
after convergence, where "Best" indicates the best performance
within our DM-SGD experiments, and "Baseline" indicates regular
SGD as our baseline. The improvement is up to 5%.

tures. The weighting factor w is a free parameter. As w = 1
results in stratified sampling (see Theorem 1), this baseline
is naturally captured in our approach.

In this setting, the class label is a natural criterion to divide
the data into strata. One can then re-sample the same amount
of data from each stratum in order to re-balance the data
set. Such a mechanism constrains the mini-batch size to
be k = sM where M is the number of classes/strata and s
is a positive integer. As proved in Section 4, when k = M
and w = 1, DM-SGD is equivalent to this type of (biased)
stratified sampling.

Figure 7 shows the percentage of data in each class for the
original dataset and with the balanced dataset. It shows that
with larger w, the dataset is more balanced among classes.
More examples are shown in the supplementary material.

We demonstrate this application with a standard linear Soft-
max classifier for multi-class classification. In our case, the
inputs are the off-the-shelf CNN fc1 feature (Xf c1). We can
also view this procedure as fine-tuning a neural network.

Figure 8 shows how the test accuracy changes with respect
to each training epoch. We compare the DM-SGD with
different weights against random sampling. The learning
rate schedule is kept the same among different experiments.
Different mini-batch sizes k are used, which is shown in the
caption of each panel in the figure. We can see that with DM-
SGD, we can reach a high model performance more rapidly.
Additionally, for a classification task, balancing data with
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Figure 9: Same quantities shown as in Fig. 8, but for the MNIST
data set, which is more balanced.
respect to classes is important since the performance is
better in general for bigger w. On the other hand, the feature
information is essential as well since the best performance
is mostly obtained with w = 0.9 and w = 0.7. Comparing
these plots, we can see that the performance benefits more
when the mini-batch size is comparably small. Small mini-
batches in general are preferred due to low cost and our
method can maximize the usage of small mini-batches.

5.3 CNN CLASSIFICATION ON MNIST

Finally, we show the performance of our method in a sce-
nario where the dataset is balanced, which is less prefer-
able scenario for DM-SGD. Here we consider the MNIST
dataset [21], which contains approximately the same num-
ber of examples per hand-written digits. Since our method
is independent of the model, we can use any low level data
statistics. Here, we demonstrate DM-SGD with raw data
features and apply it to training a CNN. Here, we construct
the similarity kernel using a RBF kernel. For the low level
feature, we use the normalized raw pixel value X directly.
To encode both class information and label information, we
use F = [(1�w)X wH] to compute the similarities ma-
trix, where w = 0.5 for this experiment. We use half of
the training data from MNIST to train a 5-layer CNN as in
[2]. Figure 9 shows the test accuracy from each iteration
with mini-batch size 10 and 200 respectively. We can see
that even if the data are balanced, DM-SGD still performs
better than random sampling due to its variance reduction
property.

6 CONCLUSION
We proposed a diversified mini-batch sampling scheme
based on determinantal point processes. Our method, DM-
SGD, builds on a similarity matrix between the data points
and suppresses the co-occurance of similar data points in the
same mini-batch. This leads to a training outcome which
generalizes better to unseen data. We also derived sufficient
conditions under which the method reduces the variance
of the stochastic gradient, leading to faster learning. We
showed that our approach generalizes both stratified sam-
pling and pre-clustering. In the future, we will explore the
possibility to further improve the efficiency of the algorithm
with data reweighing [28] and tackle imbalanced learning
problems involving different modalities for supervised [47]
and multi-modal [15] settings.
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A SUPPLEMENT
Algorithm 3 shows the details of how to sample a mini-
batch using k-DPP [19] which is used for the DM-SGD and
DM-SVI algorithm in the paper.

Algorithm 3 Mini-batch Sampling
Input: Mini-batch size k, eigendecomposition
{(vn,ln)}N

n=1 of similarity matrix L.
Compute the elementary symmetric polynomials
en

0 18n 2 {0,1,2, ...,N}
el

0 18l 2 {1,2, ...,k}
for l = 1,2, ...,k do

for n = 1,2, ...,N do
en

l  en�1
l +lnen�1

l�1
end

end
for t=1 to Number of subset samples to generate do

Sampling k eigenvectors V with indices J
J /0
l k
for n = N, ...,2,1 do

if l = 0 then
break;

end

if u⇠U [0,1] ln
en�1

l�1
en

l
then

J J[{n}
l l�1

end
end
Sample k data points indexed by Y using V .
V  {vi}i2J
Y  /0
while |V |> 0 do

Select i with Pr(i) = 1
|V | Âv2V (vT ei)2

Y  Y [ i V  V?, an orthonormal basis for the
subspace of V orthogonal to ei

end
Output: Y

end

Table 2 and 3 show the top words using K = 30 for LDA us-
ing traditional SVI and our proposed DM-SVI respectively.
We can see that the topics that are learned by DM-SVI are
more diverse and rare topics such as grain (colored in blue)
are captured.

Figure 10 shows the synthetic data that are used in the LDA
experiment. Each row represents a document and each
column represents a word.

The sampling time in seconds for the R8 dataset is listed
in Table 4. There are 5485 training documents. The first
row in the table shows the sampling time for different mini-
batch sizes k and different versions of k-DPP sampling. In

Topic 1 pct shares stake and group investment securities
stock commission firm

Topic 2 year pct and for last lower growth debt profits
company

Topic 3 and merger for will approval companies corp
acquire into letter

Topic 4 and for canadian company management pacific
bid southern court units

Topic 5 baker official and that treasury western policy
administration study budget

Topic 6 and president for executive chief shares plc com-
pany chairman cyclops

Topic 7 bank pct banks rate rates money interest and
reuter today

Topic 8 and unit inc sale sell reuter company systems
corp terms

Topic 9 mln stg and reuter months year for plc market
pretax

Topic 10 and national loan federal savings reuter associa-
tion insurance estate real

Topic 11 trade and for bill not united imports that surplus
south

Topic 12 and february for china january gulf issue month
that last

Topic 13 market dollar that had and will exchange system
currency west

Topic 14 dlrs quarter share for company earnings year per
and fiscal

Topic 15 billion mln tax year profit credit marks francs
net pct

Topic 16 usair inc twa reuter trust air department chemical
diluted piedmont

Topic 17 and will union spokesman not two that reuter
security port

Topic 18 offer share tender shares that general and gen-
corp dlrs not

Topic 19 and company for that board proposal group made
directors proposed

Topic 20 that japan japanese and world industry govern-
ment for told officials

Topic 21 american analysts and that analyst chrysler shear-
son express stock not

Topic 22 loss profit mln reuter cts net shr dlrs qtr year
Topic 23 mln dlrs and assets for dlr operations year charge

reuter
Topic 24 mln net cts shr revs dlrs qtr year oper reuter
Topic 25 cts april reuter div pay prior record qtly march

sets
Topic 26 dividend stock split for two reuter march payable

record april
Topic 27 oil and prices crude for energy opec petroleum

production bpd
Topic 28 agreement for development and years program

technology reuter conditions agreed
Topic 29 and foreign that talks for international industrial

exchange not since
Topic 30 corp inc acquisition will company common

shares reuter stock purchase

Table 2: Top 10 words for each topics learned from LDA with
traditional SVI.



Topic 1 oil and that prices for petroleum dlrs energy
crude field

Topic 2 pct and that rate market banks term rates this
will

Topic 3 billion and pct mln group marks sales year capi-
tal rose

Topic 4 and saudi oil gulf that arabia december minister
prices for

Topic 5 and dlrs debt for brazil southern mln will medi-
cal had

Topic 6
and grain that will futures for program farm cer-
tificates agriculture

Topic 7 bank banks rate and pct interest rates for foreign
banking

Topic 8 and union for national seamen california port
security that strike

Topic 9 and trade that for dollar deficit gatt not exports
economic

Topic 10 and financial for sale inc services reuter systems
agreement assets

Topic 11 dollar and for yen mark march that dealers ster-
ling market

Topic 12 and for south unit equipment reuter two will state
corp

Topic 13 and firm stock company will for pct not share
that

Topic 14 and world that talks economic official for coun-
tries system monetary

Topic 15 and gencorp for offer general company partners
that dlrs share

Topic 16 mln canada canadian stg and pct will air that
royal

Topic 17 usair and twa that analysts not for pct analyst
piedmont

Topic 18 and that for companies not years study this areas
overseas

Topic 19 trade and bill for house that reagan foreign states
committee

Topic 20 company dlrs offer stock and for corp share
shares mln

Topic 21 dlrs year and quarter company for earnings will
tax share

Topic 22 mln cts net loss dlrs profit reuter shr year qtr
Topic 23 exchange paris and rates that treasury baker al-

lied for western
Topic 24 and shares inc for group dlrs pct offer reuter

share
Topic 25 merger and that pacific texas hughes baker com-

merce for company
Topic 26 and american company subsidiary china french

reuter pct for owned
Topic 27 japan japanese and that trade officials for gov-

ernment industry pact
Topic 28 oil opec mln bpd prices production ecuador and

output crude
Topic 29 and that had shares block for mln government

not san
Topic 30 mln pct and profits dlrs year for billion company

will

Table 3: Top 10 words for each topics learned from LDA with
DM-SVI.
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Figure 10: Synthetic data used to train the LDA model in the main
paper. Each row presents a document and each column represents a
word. Documents share topics with highly imbalanced proportions.

Size k = 10 k =30 k=50 k=80

Fast k-DPP 0.001 0.0139 0.0541 0.2199
k-DPP 0.0098 0.1468 0.6438 2.6698
LDA 0.8777 1.2530 1.6414 2.2312

Table 4: Sampling time (in sec) for LDA on the R8 dataset with
different mini-batch sizes.

practice, we use the original implementation from [23] with
M = 100. To compare with the traditional k-DPP, we listed
the elapsed time with [19]. The last row shows the running
time per local LDA update, excluding sampling.

The computational time for training a neural network highly
depends on the network structure and implementation de-
tails. For example, when using only one softmax layer as
in the flower experiment, the cost per gradient step is in the
milliseconds. In this setup, k-DPP is not effective from a
runtime perspective, but still results in better final classifi-
cation accuracies. However, the cost for each gradient step
for a simple 5 layer NN as in the MNIST experiment with
K = 100 is 1.294 seconds. In the latter case, this time is
comparable to k-DPP sampling (0.7941 sec) see Table 5.
We thus expect our methods to benefit expensive models
and imbalanced training datasets more.

Figure 11 shows the bar plots of the frequency of images in
each class for Oxford Flower dataset using the number of
classes as the mini-batch size. With this setting, we can see
that when w = 1, DM-SGD is equivalent to StS.

Size k = 10 k =100 k=200

Fast k-DPP 0.0012 0.7941 5.4216
NN cost 0.166948 1.29452 2.64811

Table 5: Five Layer NN trained on MNIST with different mini-
batch sizes. Top row: sampling time (in sec) using the fast k-DPP
approach. Bottom row: run time for each update step (excluding
mini-batch sampling).



Org

0 20 40 60 80 100

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(a) Original

w=0

0 20 40 60 80 100

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(b) w=0
w=0.1

0 20 40 60 80 100

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(c) w=0.1

w=0.3

0 20 40 60 80 100

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(d) w=0.3
w=0.5

0 20 40 60 80 100

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(e) w=0.5

w=0.7

0 20 40 60 80 100

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(f) w=0.7
w=0.9
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(g) w=0.9
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Figure 11: The frequency of images in each class for Oxford
Flower dataset, with k = 102.


