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ABSTRACT
This work explores social perceptions of robots within the
domain of human-to-robot handovers. Using the Robotic
Social Attributes Scale (RoSAS), we explore how users so-
cially judge robot receivers as three factors are varied: initial
position of the robot arm prior to handover, grasp method
employed by the robot when receiving a handover object
trading off perceived object safety for time efficiency, and
retraction speed of the arm following handover. Our results
show that over multiple handover interactions with the robot,
users gradually perceive the robot receiver as being less dis-
comforting and having more emotional warmth. Additionally,
we have found that by varying grasp method and retraction
speed, users may hold significantly different judgments of
robot competence and discomfort. With these results, we
recognize empirically that users are able to develop social
perceptions of robots which can change through modification
of robot receiving behaviour and through repeated interac-
tion with the robot. More widely, this work suggests that
measurement of user social perceptions should play a larger
role in the design and evaluation of human-robot interactions
and that the RoSAS can serve as a standardized tool in this
regard.
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centered computing → User studies; User centered design; •
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1 INTRODUCTION
The ability of robots to safely and effectively pass and receive
objects is a crucial capability for collaborative human robot
interaction. It is a skill that will allow robots to be increasingly
useful in contexts ranging from manufacturing to assistive
care. In particular, handovers with robots passing objects to
human agents have previously been well studied. As robots
are often tasked with delivering objects, most work places
the robot in the giver role. Here, we focus on the reverse:
handovers from humans to robots and, in particular, how
users perceive the robot in this receiver role.

The goal of our work to gain a deeper understanding of
robots in a receiver role and how factors influence users’ be-
haviours and perceptions of the robot. We posit that examin-
ing social perceptions of collaborative robots is an important,
yet understudied aspect of human-robot interactions (HRIs)
as such perceptions often shape how these interactions takes
place. To illustrate with a simple example, users may choose
to give wide berth to a robot using fast, jerky trajectories
that is perceived to be behaving aggressively, whereas users
may choose to draw near to interact with a robot moving
slowly and smoothly, perceiving it to be friendly and docile.

The study we present here examines how human collab-
orators perceive their robotic counterparts from a social
perspective during object handovers - specifically, we explore
how changing conditions affecting how the robot receives an
object may change user opinion of the robot. For this work,
we use the Robotic Social Attributes Scale (RoSAS) which
was recently developed by Carpinella et al. [7].

2 BACKGROUND
2.1 Handovers
Prior work studying handovers has mainly been focused on
human-to-human and robot-to-human handovers. Among
these studies, there seems to be no consensus on which set
of factors are important in determining how handovers are
conducted; rather, a survey of the literature indicates that a
multitude of unique factors affect how a handover is carried
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out by participants. Many studies considered how seemingly
inconspicuous factors can play an important role in coordi-
nating and directing handovers [1, 4, 5, 9, 16, 21, 22, 28, 29].
For example, multiple studies have found that gaze and eye
contact for both humans and anthropomorphic robots can
affect timing and coordination of handovers [1, 22, 28, 29].
Another stream of work has examined how grip and load
forces plays an important part in allowing givers and receivers
negotiate handovers leading to insight into the roles partic-
ipants assume within a handover interaction [9, 18]. Other
studied factors include arm kinematics and movement timing
[1, 5], proxemics [4, 19] and handover object orientation [2, 8].

Since the number of factors within design space for human-
to-human and robot-to-human handovers appears vast, we
would expect that the design space for human-to-robot han-
dovers would be no different, although largely unexplored. In
this work, we begin by delving into factors we expect could
affect perceptual judgments of the robot receiver, measured
using the RoSAS.

2.2 The Robotic Social Attributes Scale
(RoSAS)

In prior work, several studies of HRI have employed the God-
speed scale to measure user perception of robots. Developed
by Bartneck et al., the Godspeed scale features five dimen-
sions for rating robots: anthropomorphism (human-like vs
machine-like), animacy (how life-like the robot appears or
behaves), likeability (how friendly a robot seems), perceived
intelligence, and perceived safety [3]. However, despite its
widespread appeal, Ho and MacDorman and Carpinella et al.
have found shortcomings to the scale including: lack of empir-
ical work examining its psychometric properties, occurrences
where scale items are confounded with positive and negative
affect, situations where items do not correspond to the under-
lying constructs they are meant to measure, high correlations
between constructs, and multidimensionality of some item
pairings [7, 14].

Thus, in an effort to provide a more valid scale, Carpinella
et al. developed the Robotic Social Attributes Scale (RoSAS)
which attempts to address these issues through exploratory
factor analyses and empirical validation. The RoSAS is a
social psychometric instrument aimed towards measuring
social perception and judgments of robots across multiple
contexts and robotic platforms [7]. The development of the
RoSAS is based upon the Godspeed scale and claims to im-
prove cohesiveness, eliminate unnecessary dimensions through
factor analysis, and not be tethered to specific types or mod-
els of robots. The scale measures three underlying robotic
attributes - competence, warmth, and discomfort using 18
items which are shown in Table 1. While the scale borrows
the competence and warmth attributes from more standard
psychometric instruments used in social psychology measur-
ing social perception [11], work in [7] shows that evaluations
of robots are somewhat more complex, employing the third,
discomfort attribute that is additionally measured by the
RoSAS. In Carpinella et al.’s work, the scale was validated

Table 1: Table of RoSAS items testing each attribute.

Competence Warmth Discomfort
Reliable Organic Awkward

Competent Sociable Scary
Knowledgeable Emotional Strange

Interactive Compassionate Awful
Responsive Happy Dangerous

Capable Feeling Aggressive

via a study which had participants evaluate gendered human,
robot, and blended human-robot faces shown on a screen. In
contrast, this work proposes to use the RoSAS to evaluate a
physical HRI.

The RoSAS has been chosen for this work as it provides a
empirically validated method of measuring how users perceive
their robotic counterpart. Additionally, as the RoSAS shares
the competence and warmth dimensions with measures of
social perception of people, it allows for intuitive comparisons
and extrapolation of how the robot may be matched against
a human in terms of these dimensions.

3 EXPERIMENTAL DESIGN
As this work is mainly an exploration of design space for robot
receiving during handovers, we selected a limited number of
variables from a potentially large pool to test. To aid in this
selection, we chose factors that affect the chronological begin-
ning, middle, and end of the handover. Three factors emerged
as the variables for robot receiving during handovers during
a pilot study: initial position of the arm prior to handover,
grasp type, and retraction speed following handover.

3.1 Initial Position of the Arm Before Handover
(Down and Up)

For this factor, we modify the initial arm position of the robot
displayed to the giver prior to handover. Two positions are
used which are labeled up and down. Both initial positions
are shown in Figure 1. We have chosen to examine initial arm
position as a factor since we expect that differences here may
affect giver behaviour when they are reaching out to indicate
where and when a handover takes place. For example, the
up position could convey the robot is awaiting the handover
object, whereas the down position might suggest that the
robot has not yet recognized the givers intent. They also
present slightly different initial spacing the between the robot
end effector and user, which may affect where the handover
takes place as indicated by Huber et al. and Basili et al. in
[4, 15].

3.2 Grasp Type During Handover (Quick and
Mating)

Motivated by prior studies on haptic negotiation in human-
computer interaction which suggest that dynamic interactions
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Figure 1: Experimental setup for handover experiment. Diagram shows both the up and down initial arm positions tested as
conditions in the experiment.

are able to change how ’personal’ and ’human-like’ an in-
teraction is [13, 23], robot grasping is examined as another
factor in this work. Gripper design and grasping is still an
active area of research. Much of this work tries to solve
the problem of matching the speed, smoothness, dexterity
and conformity of the human grasp. Current state-of-the-art
grasping methods either carefully plan feasible grasps and
execute them slowly, or applies brute force to ’robotically’
grasp without the delicacy of human touch. Rather than
focus on object grasping, we have decided to use a simple
exectromagnetic interface, co-planar between the robot’s tip
and a baton (to be used as the handover object in the exper-
iment). This allows us to emulate both extremes - speed and
brute force can be both achieved by turning on the magnet
in close proximity to the baton, creating sudden impulses
due to minute misalignments. Alternatively, we can accom-
modate misalignments to create a smooth yet slow contact.
In the quick grasp, the robot moves its electromagnetic end
effector to within 1 cm distally from the cap of the baton
during a handover. As soon as the 1 cm threshold is met,
the electromagnet is activated and draws in the baton. In
the mating grasp, the robot deliberately moves all the way
into contact with the baton. Then, based on measurements
of an ATI Mini45 Force/Torque sensor (ATI Industrial Au-
tomation, Apex, North Carolina, USA) located in series with
the electromagnet at the robot end effector (see Figure 1), it

further adjusts its orientation to achieve flush contact. Only
when the electromagnet is coplanar with the baton’s cap is it
activated. This behaviour allows the robot to ensure stable
contact and thus safety of the object during handover before
retracting. A flowchart of how these grasping behaviours are
carried out can be found in Figure 2.

3.3 Retraction Speed Following Handover (Slow
and Fast)

Retraction speed was selected as a factor for examination
as prior work has shown that a robot’s speed of movement
seems to play a significant role in how human observers and
collaborators subjectively perceive the robot [24, 27, 30]. For
example, in an experiment conducted by Zoghbi et al., they
found that fast robot motions were correlated with increased
user arousal and decreased valence during self-reports of affect
[30]. Thus, in this work, we hypothesized that retraction speed
following handover may affect how users perceive the robot in
terms of the RoSAS measures of warmth and discomfort, e.g.,
slow retraction speed may be rated as higher warmth and
lower discomfort as opposed to higher speed which may lead
to less warmth and greater discomfort. The slow setting was
set to 10 cm/s, whereas 20 cm/s was set as the fast setting.
These settings were designed to emulate a gentle tug and a
firm yank.
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Figure 2: Flowchart of quick (top row) and mating grasp types. The quick grasp pulls in the baton magnetically while the mating
grasp establishes coplanar contact, gently pressing against the baton before activating the magnet.

Table 2: Table of experimental conditions.

Condition Arm Position Grasp Type Retraction Speed
1 Down Quick Slow
2 Up Quick Slow
3 Down Quick Fast
4 Up Quick Fast
5 Down Mating Slow
6 Up Mating Slow
7 Down Mating Fast
8 Up Mating Fast

3.4 Conditions
We use a 2x2x2 experiment design to test these factors, which
form 8 conditions as shown in Table 2. We chose these factors
not only to see how they affected user perception of the
robot’s attributes, but also to study how they influenced
proxemics and kinodynamics of the handover interaction.
For example, it was hypothesized that examining initial arm
position could help determine how people approach and direct
handover gestures to a disembodied robot arm and how
these gestures compare to human receivers studied in prior
work [4, 26]; retraction speed and grasp type were selected
to research the force/torque interaction between the giver
and receiver and to establish what dynamic negotiations
occur during human-to-robot handovers. Although beyond
the scope of this manuscript, the investigations examining
these aspects of this experiment are presented in [25].

4 EXPERIMENT SETUP
4.1 System
A KUKA LBR iiwa 7 R800 robot (KUKA, Augsburg, Ger-
many) was used in this study to receive objects from partici-
pants. The robot was mounted as shown in Figure 1, 135 cm
above ground level and fitted with a simple electromagnetic
gripper. When activated, the gripper allowed the robot to

securely grasp a handover baton via coplanar interfacing with
a ferromagnetic cap mounted to the top end of the baton.

We use a set of 12 OptiTrack Flex 13 motion capture
cameras (NaturalPoint, Corvallis, Oregon, USA) to track
objects within an approximately 3x3 m space. Each tracked
object uses a unique constellation of retroreflective markers.
We track the user’s hand, handover object (baton), and
robot end effector. The Flex 13 cameras have a frame rate
of 120 frames per second with an average latency of 8.33 ms
(as reported by OptiTrack’s Motive software). Position and
orientation tracking data of each object is transmitted via
UDP to a second computer controlling the robot’s behaviour.

For our system, we used a handover model which stipulated
that the robot receiver reacts to the giver. Thus, in our study,
we had participants initiate the handover by holding out the
baton towards the robot, similar to how handovers have been
initiated in previous studies [26]. The robot checked to see
if the baton is in its reachable workspace; if so, the robot
then proceeded to move to grasp the object from its initial
position. Once certain grasp conditions are met as determined
by the grasp type, the robot activated the electromagnet and
began retracting the arm and baton by 10 cm, before moving
into the arm down position (see Figure 1). If, at any point
during the retraction and movement to the arm down position,
the system detects that the baton had not being grasped
(i.e., the giver did not release the baton and overcame the
electromagnet), the robot immediately returned to the baton
to reattempt grasping.

4.2 Participants
This study was reviewed and approved by the Disney Re-
search Institutional Review Board. A priori power analyses
were conducted to determine the sample size required for
this study. With 𝛼 = .05, we concluded that a sample size
of at least 20 was needed to detect a moderate effect size
(𝜂2

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = .13) with 90% power (1 − 𝛽) [10]. Recruitment
was performed within Walt Disney Imagineering Advanced
Development and Disney Research. Twenty-two participants



Evaluating Social Perception of Human-to-Robot Handovers Using the RoSAS HRI ’18, March 5–8, 2018, Chicago, IL, USA

(11 females, 11 males), aged 22-52 years [M = 30.32, SD =
8.12] were recruited in total. All participants provided their
informed consent prior to the experiment; they were notified
that their participation was voluntary, and they were allowed
to withdraw from the experiment at any time. Additionally,
we obtained permission from all participants to record both
video and motion capture data from the experiment. No
reward was given for participation in this study.

4.3 Participant Task
At the start of each experiment session, participants were led
into the motion capture space and asked to wear a motion-
tracked glove on their dominant hand. They were asked to
stand behind a table, as shown in Figure 1, to reduce any
likelihood of injury to participants by restricting their body
(except the hand holding the baton) from entering the robot’s
reachable workspace.

For each trial, participants picked up the baton off the
table and initiated a handover to the robot after hearing
the experimenter say ’go’. Upon detecting the baton in its
workspace, the robot would move to retrieve the baton in
a way that was consistent with the condition being tested.
Three trials were performed for each condition (3 trials * 8
conditions = 24 trials in total per participant). Following
each set of three handover trials for a condition, participants
were asked to complete the full RoSAS inventory which asked
them to rate how closely each of the 18 items associated with
the robotic handovers they just performed. Ratings were on a
scale from 1 to 7 where 1 was ’not at all’, 4 was ’a moderate
amount’, and 7 was ’very much so’.

Conditions were counterbalanced between participants us-
ing a Latin square design to prevent carry-over effects. Each
experiment session lasted approximately 30 minutes.

5 RESULTS
5.1 RoSAS Internal Consistency and

Dimensionality
As the RoSAS is a relatively new scale that has not yet
been applied to human-robot interactions [7], we conduct
an internal consistency test to confirm the results of the
exploratory factor analysis performed by Carpinella et al.
Internal consistency measures how closely the RoSAS in-
ventory items fit within the three attributes (competence,
warmth and discomfort) using the data in this study. For
testing, Cronbach’s alpha was used; an 𝛼𝐶𝑟𝑜𝑛𝑏𝑎𝑐ℎ ≥ .80 is
considered to represent high scale reliability. Items for com-
petence (𝛼𝐶𝑟𝑜𝑛𝑏𝑎𝑐ℎ = .90), warmth (𝛼𝐶𝑟𝑜𝑛𝑏𝑎𝑐ℎ = .94) and
discomfort (𝛼𝐶𝑟𝑜𝑛𝑏𝑎𝑐ℎ = .81), all scored above this thresh-
old suggesting that the items have relatively high internal
consistency within their respective attributes.

In addition to investigating consistency, dimensionality of
each attribute of the RoSAS were considered as well. Uni-
dimensionality indicates that the items of each attribute
measure and correspond to only one dimension of the scale.
On the other hand, if two or more items are needed to ex-
plain the majority of the variance within one attribute, this

Figure 3: Factor analysis scree plot for RoSAS attributes.

attribute would be multidimensional; this would invalidate
the RoSAS as the attribute would also be measuring and
combining distinct aspects. A factor analysis was performed
to ensure that the attributes are unidimensional. Eigenvalues
represent how much variation in each attribute is explained
by each item were examined; the larger the eigenvalue, the
more variation the item explains. For an attribute to be uni-
dimensional, one would expect to see one item account for a
large portion of the variance within the attribute, and other
items account for much less variation. As shown in Figure 3,
the results show that the first items in competence, warmth
and discomfort attributes explains 67.7%, 76.9%, and 53.5%
of the variance respectively. Given that a majority of the
variances are explained by one item within each attribute,
our findings suggests that each attribute is unidimensional.

5.2 Effect of Conditions
A three-way repeated measures MANOVA was conducted
to test the effect of the manipulated variables (initial arm
configuration, speed of retraction, and grasp type) on the
RoSAS attributes (Figure 4). Effect sizes in terms of partial
eta squared (𝜂2

𝑝𝑎𝑟𝑡𝑖𝑎𝑙) are reported 1.
Significant main effects of grasp on reports of competence

[F(1,21)=25.660, p<.001, 𝜂2
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 =.550] and discomfort

[F(1,21)=7.485, p=.012, 𝜂2
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 =.263] were found. The

latter effect is qualified by a significant interaction effect
of speed by grasp on reports of discomfort [F(1,21)=7.360,
p=.013, 𝜂2

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 =.260]. A post hoc pairwise comparison in-
dicates that the average competence score for the quick [M
= 5.225, SD = 0.980] grasp type is 1.017 points higher than
the mating [M = 4.208, SD = 1.135] grasp type [𝑝 < .001],
representing a large effect size [𝑑 = 0.835]. No other main or
interaction effects were found to hold statistical significance.

1As a rule of thumb, Cohen indicates that partial eta square values of
.0099, .0588, and .1379 may serve as benchmarks for small, medium,
and large effect sizes [10].
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Figure 4: Participants ratings of the robot’s competence,
warmth and discomfort over condition. Error bars represent
95% CIs.

The significant retraction speed by grasp interaction effect
(Figure 5) was further investigated using paired t-tests at
levels of retraction speed (𝛼 = .025). A significant difference
in discomfort scores between the fast [M = 1.648, SD =
0.638] and mating [M = 2.580, SD = 1.140] grasp types
was found at low speed [T(43)=2.621, p<.001, d=1.048]. No
significant difference in discomfort scores between quick [M
= 2.242, SD = 1.241] and mating [M = 2.326, SD = 1.108]
grasp types was found at high speed [T(43)=0.370, p>.05,
d=0.072]. There was also a failure to detect a significant
difference between scores at slow and fast retraction speeds
for the mating grasp.

5.3 Effect of Repeated Interaction over Time
Although the presentation order of conditions was coun-
terbalanced across participants, we wanted to determine if
participants’ perception changed over the course of repeated
handover interactions with the robot. To examine this ef-
fect, we categorized participants’ trials by the order in which
they were presented in time rather than by experimental
condition as shown in Figure 6. Trend analysis, a statistical
test based upon the F-statistic that is an alternative to an
ANOVA [12], was conducted for each attribute with appro-
priate corrections for non-spherical data. Results showed a
significant positive linear trend for warmth [F(1,21)=7.375,
p=.013, 𝜂2

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 =.260] and negative linear trend for discom-
fort [F(1,21)=6.442, p=.019, 𝜂2

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 =.235]; no significant
linear trend was detected for competence. Higher order trends
were non-significant for all attributes.

Figure 5: Interaction plot showing participants ratings of the
robot’s discomfort based on grasp type (quick, mating) at
levels of retraction speed (slow, fast). Error bars represent
95% CIs.

Figure 6: Participants ratings of the robot’s competence,
warmth and discomfort over time (segmented into condition
presentation blocks). Linear trend lines for warmth and dis-
comfort attributes are shown. Error bars represent 95% CIs.

6 DISCUSSION
6.1 RoSAS Internal Consistency and

Dimensionality
Carpinella et al. claims in [7] that "RoSAS provides a psycho-
metrically validated, standardized measure that can be used
to measure robots developed by different people in different
places for differing purposes and over time." As this is the
first known usage of the RoSAS for human-robot interaction,
we felt it important to examine the integrity of the scale
as it applies to data collected in this study. Although a full
validation of the RoSAS using confirmatory factor analysis
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was not performed due to our modest sample size, exam-
ination of the results show that the 18 items of the scale
conform to the three measures of the scale - competence,
warmth and discomfort - with a high degree of consistency.
Additional testing showed that the attributes were highly
unidimensional. Thus, the results suggests that the applica-
tion of RoSAS for this work, and perhaps more generally to
other human-robot interactions, appears to be valid. However,
more work is needed to concretely confirm the validity of
using RoSAS for other HRIs.

6.2 Effect of Conditions
As shown by the results, grasp type had a significant and
large effect on competence scores, with the quick grasp scor-
ing significantly higher than mating grasping. This find runs
contrary to our expectation that having the robot ensure
the handover object’s safety through stable contact would
demonstrate more intelligent/competent behaviour. One ex-
planation for this finding is that although the mating grasp
demonstrates more intelligent algorithms to ensure handover
object safety, users may actually find the method to be a
significant departure from handovers between human partic-
ipants compared to the quick grasp; thus, they not able to
adapt easily to this novel method of handover. For example,
in human-human handovers, receivers apply pulling/tugging
forces to the object which signal to the giver to release the
object [9]. As opposed to the quick grasp, the robot initially
applies pushing forces to the object in the mating grasp,
which runs contrary to expectation and leads to confusion.
As evidence for this, review of video recordings show partici-
pants complying to the robot pushing against the baton.

An alternative but complementary explanation for the
phenomenon relates to trade-offs made by each grasp type:
the quick grasp trades off object safety for efficiency in terms
of time to complete the handover, whereas mating does the
opposite. Having faster, more seamless handovers may factor
more into competence scores than ensuring object safety,
particularly if the role of maintaining the object’s safety
throughout the handover is the giver’s responsibility rather
than the receiver’s as suggested by Chan et al. [9]. In this
case, having both participants in the handover be responsible
for object safety may feel redundant to the user.

As seen from the results, we also detected a significant
retraction speed by grasp interaction effect on discomfort
scores. Analysis of this interaction effect suggests that for
the mating grasp, the discomfort rating was unaffected by
retraction speed, whereas the quick grasp increased discom-
fort to within the same range as the mating grasp in the fast
retraction speed condition. This may be due to object safety
being doubly compromised by both the quick grasp type and
fast retraction which emphasizes speed over safety causing
participants to feel that the robot appears too ’brash’ (as one
participant was quoted) in how the object is handled by the
robot during the handover. It appears that the quick grasp
coupled with slow retraction was rated less discomforting
possibly due to increased time for the giver to ensure that the

baton is securely grasped by the robot during the retraction
phase of the handover. It is possible that discomfort decreased
only when both grasp and retraction speed matched their
expectations. To further explore if this is indeed the case,
we plan on analyzing force/torque data collected during the
study as future work.

As opposed to retraction speed and grasp type, we failed
to detect any main effects of initial arm position on any of the
RoSAS attributes. Although this result may be due to small
sample size and consequently lack of power, obtained effect
sizes indicate that the magnitude of the effect of varying arm
position is extremely small for the attributes of competence
and warmth (𝜂2

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 < .004), and small-medium for discom-
fort (𝜂2

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = .051) when applying Cohen’s benchmarks
[10]. This suggests that user perception of robot competence
and warmth may be better informed by the robot’s dynamic
behaviours rather than static poses; a study with larger sam-
ple size would be needed to determine if the moderate effect
of robot pose on ratings of discomfort is significant. However,
we posit that initial position may still impact on timing and
location of the handover, as well as how the negotiation dur-
ing handover is accomplished. Thus, we plan on analyzing
the collected kinematic data to determine if such effects exist.

6.3 Effect of Repeated Interaction Over Time
Examination of participants evaluations of the robot’s com-
petence, warmth, and discomfort over repeated interactions
showed a significant linear increase in warmth and linear
decrease in discomfort; both of these trends were observed
to have a large effect size indicating the prominence of these
observations. These findings suggests that the more people
interact with the robot, the more they develop positive at-
titudes towards the robot. The development of familiarity
or affinity towards robots is not at all surprising to see as
other studies have shown this phenomenon to occur in other
contexts such as in assistive home care [17, 20] or military
robotics [6]. However, the observation of linear trends in both
ratings of warmth and discomfort over time is a notable result.
This leads us to wonder if changing interaction parameters
or attributes of the robot’s receiving gestures could lead to
changes in trend rates for warmth/discomfort ratings. If so,
these parameters may be tuned or optimized to obtain a
fast increase for warmth ratings and decrease for perceived
discomfort levels. In turn, this may provide some benefits to
having inexperienced users feel comfortable interacting with
robots that may appear imposing or foreign - i.e., quickly
having factory workers become comfortable working with
collaborative industrial robotics. Further study is required.

Failing to detect any significant trends in ratings of compe-
tence over time coupled with small effect size (𝜂2

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 < .018)
suggests that how competent or able a robot appears to users
is not a function of repeated interaction, but rather simply of
behaviours attributed to the robot, as seen by the significant
main effect of grasp type on competence.
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6.4 Implications for Human-Robot Interactions
Although this work focuses on handovers, some results ob-
served may have wider implications for other HRIs.

Short of full validation, the RoSAS was shown to be inter-
nally consistent and unidimensional across attributes. This
result is promising in that it suggests that the scale may be
used to similarly evaluate user social perceptions of other
HRIs, and thus has the potential to perform as a standardized
metric. Additionally, the RoSAS can serve as a valuable tool
for aiding in the design and evaluation of robot appearances
and behaviours by way of allowing users to provide subjective
input by way of a proven framework.

The effects that were observed with grasp and retraction
speed impacting people’s perceptions of the robot’s compe-
tence and discomfort may have broader implications for HRI
in terms of the trade-offs they present - e.g., faster interaction
during HRI may be more efficient, but may cause greater dis-
comfort to users, and seemingly more intelligent behaviours
by the robot may not be perceived as such due to decreased
efficiency of the interaction. Thus, these observations high-
lights the importance of considering user perceptions when
efforts to develop HRIs which add efficiency or capabilities
are undertaken.

Lastly, the observation of trends over repeated interactions
with the robot may not be isolated to just the handover
use case. The finding that the more that users interact with
the robot, the more they develop positive affect towards the
robot may just as likely with other HRIs. Thus, this implies
that examining inexperienced participants reactions during
studies of HRIs may not be as important as considering
longitudinal effects and how fast people’s perceptions change
over repeated interactions.

7 CONCLUSIONS AND FUTURE WORK
In this work, we have performed a study of human-to-robot
handovers examining the social perceptions that users have
of the robot, and how these perceptions change in response to
modifications to the robot’s kinodynamic behaviours during
the handover. These perceptions were measured using the
RoSAS tool developed in [7]. A post hoc factor analysis and
assessment of the dimensionality of the tool’s attributes indi-
cate that the RoSAS appears to be an acceptable instrument
for evaluating the subjective experiences in the handover task
and perhaps for other physical HRI contexts as well.

Using the RoSAS, we have found that by varying simple
parameters such as arm retraction speed following handovers
and grasping behaviour, users can hold significantly different
views on social qualities of the robot in terms of competence
and discomfort. Ironically, even though the robot demon-
strated a more intelligent grasping strategy in the mating
grasp compared to the quick grasp, participants perceived the
robot as being less competent and more discomforting. Thus,
seemingly intelligent robot behaviours doesn’t necessarily
constitute competent or comfortable behaviours in the eyes
of users. It appears, rather, that interaction efficiency and/or
similarity to human-human handovers (at least in terms of

force profiles) constitutes a larger part of establishing more
positive user affect when working with the robot. Also, we
have detected that users perceive robots as being less dis-
comforting and having more emotional warmth the more
exposure they have to handover over objects to the robot.
We believe this may apply to other human-robot interactions
as well.

The results presented here offers a glimpse into how users
ascribe social attributes to robots during collaborative tasks
and how RoSAS can be used to evaluate these perceptions.
Our hope is that the results of this study may inform other
human-robot interactions which can be similarly evaluated.

As discussed in the analysis, the results of this study have
generated more research questions and numerous pathways
for further exploration. Using additional data collected from
this study, we have investigated how the kinodynamics of
human-to-robot handovers are affected by the factors of
initial arm position, grasp type, and retraction speed (pre-
sented in [25]). As future work, we wish to determine whether
similarities or differences exist between human-human and
human-robot handovers. Previously, Chan et al. established
that both participants in a handover implicitly take up roles
during the handover negotiation where the giver is responsi-
ble for the safety of the object and the receiver is responsible
for the efficiency and pace of the handover [9]. We aim to
determine if these roles also exist within the framework of
human-to-robot handovers. Furthermore, with regards to the
RoSAS, we plan on expanding its use for other HRIs to ob-
tain further substantiation of its validity and to explore how
social perceptions could/should shape such interactions.
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