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ABSTRACT
Re-identification methods often require well aligned, unoccluded
detections of an entire subject. Such assumptions are impractical
in real world scenarios, where people tend to form groups. To cir-
cumvent poor detection performance caused by occlusions, we
use fixed regions of interest and employ codebook-based visual
representations. We account for illumination variations between
cameras using a coupled clustering method that learns per-camera
codebooks with entries that correspond across cameras. Because
predictable movement patterns exist in many scenarios, we also
incorporate temporal context to improve re-identification perfor-
mance. This includes learning expected travel times directly from
data and using mutual exclusion constraints to encourage solutions
that maintain temporal ordering. Our experiments illustrate the
merits of the proposed approach in challenging re-identification
scenarios including crowded public spaces.
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1 INTRODUCTION
Re-identification is the task of finding the same individual across
a network of cameras. This problem is very challenging due to
significant changes in appearance caused by variations in illumi-
nation, viewing angle and a person’s pose. In this paper, we fo-
cus on re-identification in crowded environments with predictable
movement patterns. For instance, people tend to maintain their
ordering in queues, whether it be checking out at a grocery store
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or passing through airport security. Such scenarios are popular for
re-identification (and extremely challenging), but have not been
studied extensively.

Most re-identification approaches assume reliable detections
[1, 7, 10, 19, 23, 32], which are not possible in crowd environments.
Only a few methods have targeted more challenging scenarios
where detections are less reliable and partially occluded [5, 14, 44].
To mitigate the impact of occlusions and poor detection alignment,
we focus on re-identifying groups at pinch points like queues and
doorways.

Instead of running an object detector, we define a fixed region of
interest (ROI) on the image plane (see Fig. 1). We propose to repre-
sent the visual content within an ROI using a codebook. Codebooks
[8, 34, 35] have shown high efficacy in scenarios where special-
ized object detectors fail. However, standard codebook learning
approaches are inefficient in multi-camera environments when
there are significant appearance changes between cameras. As a
result, we propose a new coupled clustering method that generates
per-camera codebooks with entries that correspond across cameras.

A codebook encoding of an ROI is usually not as distinctive as a
full body-based descriptor (which can leverage the spatial locations
of visual features). Therefore, we enhance our representation by in-
corporating temporal information. Predictable movement patterns
exist in many scenarios, and these can be used to disambiguate peo-
ple with otherwise similar appearances. In airports, for example,
people tend to move from ticketing through security and then to
their boarding gates (see Fig. 1). Our main contributions are:

• We propose a new coupled clustering method that learns code-
books for each camera pair with codewords corresponding
across cameras. This copeswith significant illumination changes
of visual appearance between cameras.

• We integrate a temporal model into our matching strategy.
The temporal model is jointly optimized using both visual ap-
pearance and temporal information. Initial parameters of the
temporal model are first estimated using the visual appear-
ance, and then they are used as a feedback to enhance the
re-identification. Coherent re-identification matches in return
provide better estimation of temporal parameters. By iterating,
the method quickly converges to the optimal configuration.

• Because existing re-identification datasets have no temporal
information, we collected a newQUEUE dataset that simulates
a queue scenario in which people move from one location to
another with significant variations in illumination. Recorded
sequences come from non-overlapping cameras. We also mod-
ified existing re-identification datasets to simulate temporal
information by adding synthetic timestamps.
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Figure 1: Predictable movement patterns exist in many scenarios. We model the travel time between cameras to help disam-
biguate people with similar appearances. Because full body detectors are unreliable in crowded scenarios, we use a fixed region
of interest (ROI) on the image plane and represent its visual appearance using a set of learned camera-specific codebooks that
have corresponding entries (camera-specific codewords) across cameras. Learning corresponding entries facilitates matching
under different imaging (illumination) conditions.

Our experiments illustrate the merits of joint optimization and
achieve new state-of-the-art performance on multiple datasets out-
performing existing approaches that only considered visual appear-
ance models.

2 RELATEDWORK
Re-identification remains an unsolved problem due to large intra-
class and inter-class variations caused by changes in lighting, view-
ing angle and a person’s pose. Most effective approaches learn
robust metrics for matching [1, 6, 19, 23, 32, 33]. These methods
learn a distance function among features from different cameras
such that relevant dimensions are emphasized while irrelevant ones
are discarded. Explicitly or implicitly, all of these approaches as-
sume matching of full body appearance with negligible amounts of
occlusion and cannot operate on images taken in crowded public
spaces.

The recent work of [44] introduces partial person re-identification
to address retrieval in more realistic scenarios where only a partial
observation of a person is available for matching. It combines local
patch level matching based on sparse coding with global, part-based
matching that exploits spatial layout information.

Visual information from surrounding people has also been used
to reduce ambiguity in person identification. In [5, 14, 43] we can
find that group association between two or more people can give
valuable information about the identity of an individual. [16, 21] em-
ploy dictionary learning to cope with detection misalignment. The
bounding box images are divided into a set of stripes and per-stripe
dictionaries are learned assuming well aligned person detections.
[17, 18, 28] search for a set of linear transformations, which trans-
form features from different viewpoints to the common embedding
space. These methods implicitly assume spatial correspondence be-
tween features extracted from both viewpoints (otherwise it would
not be clear which transformation should be applied). Thus the men-
tioned methods are more suitable for recognition of rigid objects.
In contrast, our approach does not depend on spatial information.
It is mostly invariant to camera viewpoint changes and easily in-
corporates multiple people into the appearance representation (see
Fig. 1).

Although temporal cues are rarely used in recent re-identification
methods1, they were exploited in early person re-identification
and multi-target tracking methods to infer camera topology which
enabled tracking across multiple non-overlapping views [15, 26,
29]. These approaches usually exploit space-time cues to learn
inter-camera relationships that are then used to constrain the re-
identification search space. Camera topology together with tempo-
ral information can reduce the number of paths people might take,
which constrains potential re-identification matches [31, 36]. Our
approach is similar in spirit to these methods but introduces a new
formulation that jointly learns models of both visual appearance
and movement patterns.

Global motion patterns are learned in [26] for activity modeling.
Activities were detected using the density of moving pixels and
omitted visual appearance representations. Cross Canonical Corre-
lation Analysis is introduced in [24, 25] to correlate activities across
cameras with disjoint FOVs to infer the topology of a camera net-
work. The FOVs of the cameras are segmented into regions within
which the activity patterns were similar. Affinity matrices are em-
ployed to infer spatio-temporal camera topologies. [9] propose to
use cameras topology to improve the global re-identification con-
sistency. Unlike ours, it requires head, torso and leg detectors and
it becomes effective in camera networks with at least 3 cameras.

A comprehensive review of camera topology estimation meth-
ods is presented in [40]. Similarly, temporal information has been
used to constrain the re-identification search space [31, 36]. Re-
identification that employs time-ordering constraints is widely ap-
plied in Intelligent Transportation Systems (ITS). [13] propose a
method for car re-identification based on simple visual appearance
model and the expected travel time between cameras. Simple ap-
pearance model makes it unsuitable for person re-identification and
their temporal model must be initialized using the ground truth.
The visual appearance of a car and an inductive loop (extracting
speed and induction response amplitude) are used together with
time information to predict when the vehicle would re-appear in the
second camera [39]. Time ordering constraints are integrated using
manually computed temporal windows which controlled feasibility.

1This phenomenon may be a result of the available re-identification datasets, which
are often only a collection of bounding boxes extracted from disjoint camera views
with no temporal information.

Oral Session 3: Multimedia Applications (Oral Presentation) ICMR’17, June 6–9, 2017, Bucharest, Romania

210



Groups Re-identification with Temporal Context ICMR ’17, June 06-09, 2017, Bucharest, Romania

N (⌧, �2)

⌧i ⌧j

Temporal contextAppearance matching

Appearance + temporal matching

EstimationEstimation

FeedbackFeedbackFeedback

Figure 2: Learning and Leveraging Temporal Context. Actual travel times between cameras are estimated from reliable
re-identification matches using only appearance information. Model parameters are then fit to these data samples. Re-
identification with temporal context is then used to disambiguate detections with less distinctive visual appearances.

In these approaches, the visual appearance and temporal cues
are often modeled independently. Our approach, on the other hand,
jointly models visual appearance and temporal context using a
feedback loop (see Fig. 2).

Re-identification usually treats every test case (query) as an inde-
pendent retrieval task. In contrast, multi-target tracking algorithms
[3, 41] typically conduct multiple queries simultaneously by posing
a linear assignment problem [12, 41]. Prior work [37] extended
this idea and proposed to compute m-suboptimal solutions to find
consensus assignment. In this paper, we follow a similar idea and
incorporate temporal context with multiple queries to simultane-
ously search for an optimal solution. This enforces mutual exclusion
constraints, improving the re-identification accuracy.

3 METHOD
We define a region of interest (ROI) as rectangular bounding box
containing sub-image for each camera. In contrast to the common
re-identification problem where every ROI bounding box image
contains a well detected individual, we consider crowded scenarios
where ROI might contain multiple people, occluding each other. As
object detectors might be infeasible in such scenario due to large
and frequent occlusions, ROI is assumed to be fixed. However, as
"pinch points" (doorways, gates, etc.) exist in many scenarios, these
are our natural choices for ROIs.
LetA andB denote two cameras in a network. Each cameramonitors
a local region that people pass through, such as a gate or doorway
(see Fig. 1). Suppose there are two ROI bounding boxes bi and bj
captured from cameras A and B respectively at times ti and tj , and
that appearance descriptors xi and xj are extracted from the visual
content of each ROI bounding box.

We refer to triplets ok = (bk , tk , xk ) as observations. From a
Bayesian point of view, re-identification is the likelihood that ob-
servations oi and oj are different images of the same person. Most
re-identification methods ignore the spatiotemporal information
and only consider the similarity of the extracted appearance de-
scriptors

PReID(oi , oj |i ≡ j) ∝ PApp(xi , xj |i ≡ j). (1)

In this work, we incorporate the expected movement patterns as
well. Because we have restricted our camera views to each focus on

a single localized region, the extracted bounding boxes locations
are effectively constant (see Fig. 1). As a result, we formulate the
likelihood as a product of appearance similarity and expected travel
time between the two locations2

PReID(oi , oj ) ∝ PApp(xi , xj )PTime(ti , tj ), (2)

where the conditional dependency i ≡ j has been omitted for nota-
tional convenience. Re-identification is often used to match obser-
vations between cameras: given an observation oj from camera B,
the most likely observation of the same individual from camera A
is

o∗i = argmax
i

PReID (oi , oj ) (3)

= argmin
i

d2ReID (oi , oj ) (4)

= argmin
i

(
λd2App (xi , xj ) + (1 − λ)d

2
T ime (ti , tj )

)
, (5)

where λ ∈ [0, 1] is a parameter that controls the relative influence
of similar visual appearance and expected travel time. We will now
describe the distance functions that reflect our appearance (d2App )
and temporal models (d2T ime ).

3.1 Appearance Model
Crowded scenarios produce detections that are poorly aligned
and/or partially occluded. To cope with these difficulties, we pro-
pose a visual appearance descriptor xi based on a codebook ap-
proach.

Codebooks [8, 34, 35] have been used previously in re-identification
[27, 42], but only in situations with well-aligned bounding boxes.
Different codebooks were learned for different regions of the bound-
ing box by dividing it into a fixed layout of rectangular patches
(horizontal stripes or a dense grid). Although spatial structure is
beneficial for recognition, it requires unoccluded, reliably aligned
detections, which is impractical in crowded scenarios. Instead we
learn a single codebook for the entire ROI. To achieve that we

2Our methodology easily extends to a model which does not require pre-defined fixed
locations.
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TRAIN TEST

Figure 3: Sample images from the QUEUE dataset. The left column illustrates image pairs from QUEUE01 that were used for
training codebooks; the right column illustrates image pairs from QUEUE02 simulating the queue scenario.

propose to densely sample random patches from ROI. And then
compute codebook based on descriptors extracted from patches.

Two popular choices for converting visual features into code-
words are Bag-of-words (BoW) [8] and Fisher Vector (FV) [34, 35]. Let
F = {f1, . . . , fF } be a set of image features extracted from training
data. Image features are usually high-dimensional vectors (e.g. SIFT
descriptors concatenated with color histograms) and are typically
clustered into codewords. For example, BoW = {µk : k = 1, . . . ,K}
uses k-means clustering to define codewords as the centers of the
learned clusters. The number of the clusters K is the codebook size.
BoW maps each image feature ff to a codeword k using nearest
neighbour lookup. The descriptor is a K-dimensional histogram of
codeword frequencies.

FV is an extension of BoW. The distribution of features is modeled
by a Gaussian Mixture Model (GMM). Let FV = {µk , Σk ,wk : k =
1, . . . ,K} be the parameters of a GMM fitting the distribution of
image features, where wk is the weight of the kth Gaussian with
mean µk and covariance Σk . An image feature ff is represented by
the gradients of the likelihood of this feature being generated by a
certain Gaussian. The gradients are computed over both µ and Σ
variables. The resulting descriptor is a 2K-dimensional vector (see
[34, 35] for details).

Both BoW and FV can be learned using features from different
cameras (e.g. from camera A and camera B) by combining them
into a single set FA,B = {fA1 , . . . , f

A
FA
, fB1 , . . . , f

B
F B
} and then per-

forming clustering on FA,B [27]. If there are strong appearance
changes across the two cameras, a common mapping from image
features to codewords might not be effective. Instead, we modify
the underlying clustering method (k-means for BoW and GMM for
FV) such that corresponding features will map to the same cluster
even though they have different appearances due to illumination
changes.

Coupled clustering. We propose to train codebooks on features
extracted from corresponding images which are well aligned be-
tween cameras (see Train images from Fig. 3). Note that we only
require correspondences when learning a codebook. At test time,
our method does not require well-aligned detections.

Given corresponding features fA and fB , we build FA |B =
{(fA |fB )1, . . . , (fA |fB )FA|B }, which is a set of concatenated cor-
responding image features from camera A and camera B. On such
feature set we perform either k-means (in case of BoW) or GMM (in
case of FV) clustering to obtain model parameters. For example, in
case of k-means, we divide the coupled codebookBoW A,B = {µA |B :
k = 1, . . . ,K} into two codebooks BoW A = {µAk : k = 1, . . . ,K}

and BoW B = {µBk : k = 1, . . . ,K} by extracting the first and second
halves of the cluster center dimensions respectively. FV can be split
analogously obtaining two GMM models: FVA = {µAk , Σ

A
k ,wk :

k = 1, . . . ,K} and FV B = {µBk , Σ
B
k ,wk : k = 1, . . . ,K}, where wk

are shared across the models. The appearance transfer function
between cameras is learned implicitly due to the proposed coupled
clustering method.

The concatenation step is crucial because it guides a clustering
algorithm to find clusters that represent similar visual features from
both cameras. In addition, it ensures codeword correspondence
across cameras which is crucial for computing similarity between
images (see Eq. (6)). Without the concatenation step, a clustering
algorithm would find clusters based only on appearance features
and would ignore which camera they were extracted from. Object
appearance is usually more similar in multiple images from the
same camera compared to images taken from two disjoint cameras.
In standard clustering where the source of the image is ignored,
the clusters may contain patches from only one camera.

In test stage, to compare two ROIs from different cameras, we
densely sample random patches from ROI and based on them we
compute codebook representation. We follow the same steps for a
second ROI. Thanks to the proposed coupled clustering, the code-
book representation of the same group of people across cameras,
is much more consistent than representation based on standard
codebook. Moreover, because we pick random patches from ROI,
our method is much more robust in terms of misalignment and
occlusions.

Appearance Dissimilarity Measure. Let xi and xj be extracted
appearance representations (in our case, xi and xj are histograms
(BoW) or Fisher Vectors). We compute the visual appearance dissim-
ilarity using ℓ2 norm:

d2App(xi , xj ) = ∥xi − xj ∥
2
2 . (6)

3.2 Temporal Model and Joint Optimization
For simplicity, we assume that the amount of time a subject takes to
travel between cameras A and B can be modeled as a normal distri-
butionN(τ ,σ 2). Given the parameters (τ ,σ 2) of the distribution and
the times ti and tj of the two bounding boxes, the Time Context
Dissimilarity Measure between the actual and expected elapsed
time is

d2Time(ti , tj ) =
(tj − ti − τ )2

2σ 2 . (7)
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Parameter Estimation. In practice, τ and σ are estimates of an
unknown distribution N(τ ∗,σ ∗2). The parameters of the distri-
bution could be estimated heuristically using the distribution of
typical walking speeds if the path distance between cameras A
and B is known. When that information is not available, we pro-
pose the following solution. Given an appearance dissimilarity
function dApp(xi , xj ), we construct a binary threshold classifier
h(xi , xj ) 7→ {0, 1} to predict whether observations oi and oj con-
tain indeed the same subject. We select the threshold ξ that achieves
a 95% confidence level on the training data and use only these obser-
vation pairs (oi , oj ) — e.g. people with distinctive appearances that
can be re-identified reliably — to estimate the parameters (τ ,σ 2) of
the normal distribution (see Algorithm 1 steps 1 - 3).

Threshold ξ is learned on the training set, but parameters τ
and σ are estimated at test time. Image pairs with distances below
threshold ξ can be false positives. We exploit the fact that the
variance of timestamp differences ti j = ti − tj of the true positives
is low, while ti j values of false matches form outliers. Based on
this fact, we use Minimum Covariance Determinant [4, 38] (MCD)
to estimate τ and σ parameters. The MCD method was designed
to estimate unimodal Gaussian parameters from data containing
outliers which is exactly our case.

Algorithm 1 Parameter Estimation algorithm
1: For each test query oj compute:

o∗i ← argmin
i

d2App (xi ,x j )

2: Construct ∆T = {ti j }: dApp (xi ,x j ) < ξ
3: Compute initial estimates τ ,σ ← MCD(∆T )
4: loop
5: For each test query oj compute:

o∗i ← argmin
i

d2(oi ,oj ) // see Eqs. 4-5

6: Reconstruct ∆T using all (o∗i ,oj )
7: Update estimates τ ,σ ← MCD(∆T )
8: end loop

To improve the estimations of τ ∗ and σ ∗, we propose to jointly
optimize the parameters τ ∗ and σ ∗ based on information from
re-identification stage and the current temporal model parameters
(see Algorithm 1 steps 4 - 8). After the initial estimation of τ ∗ and
σ ∗ based on the appearance-only model, we propose to re-estimate
τ and σ . We do it based on current re-identification matches, which
are obtained from our model using jointly appearance and temporal
context (see Eq. (5)). Because the re-identification accuracy of the
joint appearance and temporal context model is higher than the
appearance only model, we can re-estimate (jointly optimize) τ and
σ by taking into account timestamps of current matches. Better
temporal context enables matching individuals with less discrim-
inative visual appearance (e.g. common clothing colors such as
black winter coats). These new matches are then used to refine the
current temporal context model.

The Univariate Gaussian could be replaced with any density
estimation technique. With sufficient data, we can fit more complex
models (e.g. GMM). However as time information is not available
in re-id benchmarks and our QUEUE dataset is relatively small, a
single Gaussian distribution is effective.

3.3 Ordering Preference via Mutual Exclusion
In many re-identification experiments, each test query oi is evalu-
ated independently

o∗i = argmin
i

d2(oi , oj ). (4)

If multiple queries are conducted, it is entirely possible that different
queries oj and ok from camera B will have the same best match oi
in cameraA. By conducting multiple queries simultaneously, we can
enforce mutual exclusion constraints and ensure that each query
has a unique match. In scenarios where people are observed while
passing through confined regions, such as a gates or doorways, and
there is an expected path between cameras, the order of people
observed in A should be similar to the order of people observed in
B. By incorporating temporal context into the cost function and en-
forcing mutual exclusion constraints, we can implicitly encourage
a preference for preserved ordering to improve the recognition of
observations that do not have distinctive appearance descriptors.
Given N observations from camera A and M observations from
camera B, we formulate simultaneous re-identification queries as a
linear assignment problem

{o∗i } = argmin
π

©­«
M∑
j=1

d2(oπ (j), oj )
ª®¬ , (8)

where π isM-vector mapping observations from camera B to ob-
servations in camera A. We encode the linear assignment problem
into an M × N cost matrix C = {ci j }M×N where ci j = d2(oj , oi )
and determine the optimal assignment using the Kuhn-Munkres
(Hungarian) algorithm [20]. Our experiments evaluate the merits
of conducting queries independently versus simultaneously with a
preference for preserving ordering.

For clarity, we have described the simple case where every obser-
vation in B has a corresponding observation in A (another typical
bias in most re-identification datasets). For more practical scenarios,
our linear assignment formulation can be encoded in an augmented
matrix to include ‘no match’ conditions as well [12].

4 EXPERIMENTS
We carried out experiments on four challenging datasets: VIPeR
[11], CUHK01 [22], iLIDS-groups [43], and our QUEUE dataset.
The results are analyzed in terms of recognition rate using rank-1
accuracy as well as the cumulative matching characteristic (CMC)
[11] curve. The CMC curve represents the expectation of finding the
correct match in the top r matches. The curve can be characterized
by a scalar value computed by normalizing the area under the curve
referred to as nAUC value.

4.1 Datasets
VIPeR [11] is one of the most popular person re-identification
datasets. It contains 632 image pairs of pedestrians captured by two
outdoor cameras. VIPeR images contain large variations in light-
ing conditions, background, viewpoint, and image quality. Each
bounding box is cropped and scaled to be 128 × 48 pixels.
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Figure 4: Performance comparison of different codebook models on iLIDS-groups, QUEUE02, CUHK01 and VIPeR. Rank-1
identification rates as well as nAUC values (provided in brackets) are shown in the legend next to the method name. Coupled
clustering significantly outperforms standard approaches for both BoW and FV model.

CUHK01 [22] contains 971 people captured with two cameras. For
each person, 2 images from each camera are available. The first cam-
era captures the side view of a pedestrian and the second captures
a frontal or rear view. Each bounding box is scaled to be 160 × 60
pixels.

iLIDS-groups [43] contains 64 groups captured with two cameras
in the airport. In most cases 4 images of each group are avail-
able. Thus the dataset contains 274 images of cropped groups. This
dataset along with standard challenges like illumination changes
across cameras, introduces some other challenges including occlu-
sions because people in group tend to occlude each other. Addi-
tionally dataset was recorded at an airport where people are often
occluded by luggage. Moreover people in groups very often change
their relative positions across the cameras. We mentioned in Sec-
tion 3.1 that we need patch correspondence between cameras to
train the proposed coupled clustering codebook. Because iLIDS-
groups is very noisy and contains multiple people, it is difficult to
extract corresponding patches automatically. In the result we train
a codebook using iLIDS-MA [2] dataset, which contains 3680 man-
ually cropped images of 40 individuals, well aligned and acquired
by the same camera pair.

QUEUE is our new dataset that contains two scenarios. The first
QUEUE01 consists of 23 individuals with 3379 images of people reg-
istered by two cameras in significantly different lighting conditions
(see Fig. 3). This data was used for training the codebook. In the
second scenario (QUEUE02), 23 individuals from QUEUE01 were
asked to move from the the one location to another, simulating a
queue scenario (see Fig. 3). We manually annotated 15 groups; each
group is described by unique group id and frame time-stamp from
the video stream. As can be seen in Fig. 3 the queue is dense so some
individual belongs to more than one group. To our best knowledge
the QUEUE02 is the only group re-identification dataset which
provides timestamp information. QUEUE02 is the only dataset
which contains both: people groups and timestamps. We chose
iLIDS-groups, because it contains groups of people. VIPeR and
CUHK01, though they do not contain neither timestamp informa-
tion nor groups of people were selected to show relative improve-
ment of the proposed coupled clustering method compared with
standard Bag of Words approaches.

Dataset Codebook size
16 20 64 128 256

iLIDS-groups 29.3 31.8 29.2 29.0 -
QUEUE02 47.2 44.2 46.2 41.9 -
CUHK01 8.7 8.6 9.6 9.9 9.0
VIPeR 11.4 11.6 12.7 14.8 12.4

Table 1: Rank-1 accuracy w.r.t. codebook size for coupled
clustering based on Fisher Vector.

4.2 Coupled Clustering
In this section we evaluate the proposed coupled clustering method
from Section 3.1.We extract image features by densely sampling 24×
12 pixel patches from ROI, ignoring their spatial locations. For each
patch, we extract LAB and HSV histograms, each with 30 bins per
channel. To keep only informative patches, we applied background
subtraction. Please note that for QUEUE02 we use fixed ROI, but
for the other datasets (since we do not have access to original
images containing whole scene) we use cropped images provided
by the authors of datasets. Please note that in case QUEUE02 our
appearance model is based on Fisher Vector of randomly sampled
patches within ROI and ignores patch locations, thus is invariant to
small shifts of ROI. The resulting 180-dimensional feature vectors
were used to generate codebooks using both BoW and FV. The
appropriate size of each codebook was determined using cross
validation:CUHK01 FV(128) BoW (500),VIPeR FV(128) BoW (500),
iLIDS-groups FV(20) BoW (300), QUEUE02 FV(16) BoW(200).

In case of CUHK01 and VIPeR, we followed the common eval-
uation protocol in re-identification. We split subjects from each
dataset into training/testing: VIPeR - 316/316, CUHK01 - 486/485.

In evaluation of the iLIDS-groups dataset we followed the same
evaluation protocol as in [43], where the dataset was introduced.
We randomly select one image from each group to build the gallery
set and the rest of the images form the probe set. The selection
procedure was repeated 10 times. To train the codebooks we use
the iLIDS-MA dataset.

For QUEUE02, we split the data set into 11/12 groups, and simi-
larly, we split QUEUE01 dataset to 10/13 individuals. In this way
we assure that individuals from QUEUE01 who were used to train
the codebook do not appear in the group from QUEUE02 in the
testing phase.
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Figure 5: Rank-1 recognition rate based on the reliability of an expected travel time (simulated by synthesizing timestamps
from different normal distributions with different standard deviations σ ∗). Appearance-only models (magenta and cyan) are
not affected by temporal context. Temporal context on its own (dark-blue) is powerful but degrades quickly as the variance in
expected travel time increases (making temporal context less informative). Combining appearance and temporal context gives
a significant boost in re-identification performance compared to using either model independently. Incorporating mutual
exclusion constraints (green) generally leads to improved performance over independent queries (red).
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Figure 6: Rank-1 recognition rate with varying travel time
consistency (using different standard deviations σ ∗ for syn-
thetic timestamps). Iterative re-estimation of the unknown
σ ∗ parameter improves overall Rank-1 accuracy.

When testing, we evaluate a single-shot scenario and repeat the
codebook generation procedure 10 times for computing averaged
CMC curves. Figure 4 illustrates CMC curves on the four datasets.
It is apparent that our coupled clustering approach has a large
margin of improvement over standard clustering on all datasets
for both BoW and FV models. The significant performance gain is
especially evident using FV codebooks. In table 1 we show Rank-1
accuracy w.r.t. FV codebook size. This experiment illustrates the
merits of coupled clustering and confirms our claims that learning
a generic codebook that maps features to codewords is not as effec-
tive as learning camera specific codebooks that map corresponding
features across cameras to the same codewords. Note that the rel-
atively small gain in performance on the iLIDS-groups dataset
can be explained by the characteristics of the selected evaluation
scheme. In the evaluation scheme proposed by the authors of the
dataset, it is possible that both images from the same camera might
be assigned to gallery and probe sets. Because re-identification on
images from same camera is a much easier task, the advantages of

the proposed coupled clustering are not evident on iLIDS-groups
dataset.

4.3 Temporal Context
In this section, we evaluate the performance of the joint appearance
and temporal context model (see Section 3.2 and Eq. (5)). We em-
ploy the previously learned coupled clustering FV codebooks (see
Section 4.2) for an appearance model. We evaluate the benefit of
temporal context by comparing the performance of the appearance-
only model (see Eq. (1)) versus the appearance+temporal context
model (see Eq. (2)). In both cases, the performance is measured
when queries are conducted independently (IND) (see Eq. (5)) and
by enforcing the proposedmutual exclusion constraints (Section 3.3)
when performing all queries simultaneously (SIM) (see Eq. (8)).

VIPeR, CUHK01 and iLIDS-groups do not contain timing in-
formation, so we simulate a queue scenario by assigning random
timestamps to images from the first camera. Timestamps for im-
ages from the second camera are generated by sampling a normal
distribution N(τ ∗,σ ∗2). In real-life τ ∗ and σ ∗2 parameters would
be fixed and depend on crowd behavior. In practice, σ ∗2 controls
how much the temporal order is preserved w.r.t the second camera.
We set τ ∗ to 0 because it represents the expected time difference
between images from two cameras and can be always normalized
to 0. The above experimental setup gives us the opportunity to
study the limits of the proposed method when temporal context is
no longer informative.

Figure 5 illustrates the rank-1 recognition accuracy w.r.t σ ∗. Per-
formance of standard appearance-only re-identification (magenta
and cyan) is invariant to σ ∗. Temporal context on its own (dark
blue) is quite powerful, but degrades quickly as flow from one cam-
era to another is less ordered and the validity of the underlying
assumption breaks down. Hybrid cost functions that consider both
appearance and temporal context give significant improvement in
performance.

The effect of estimating parameters τ and σ are evaluated by
plotting the upper performance limit (dashed red & green) using
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CUHK01 VIPeR iLIDS-groups QUEUE02
Method rank-1 rank-5 rank-1 rank-5 rank-1 rank-5 rank-1 rank-5
KISSME [19] 16.41 38.02 19.60 49.53 9.57 31.64 32.14 79.46
XQDA [23] 63.21 83.00 40.00 68.13 26.15 46.76 25.89 92.86
Assoc. Groups of People [43] - - - - 22.50 45.0 - -
Our (App - IND) 9.54 26.81 14.85 37.32 31.38 47.37 47.25 96.20
Our (App - SIM) 10.00 29.83 15.59 38.81 31.88 48.65 55.46 100.00

Our (App+Time+Est - IND) s=0.5 79.98 92.00 83.77 98.52 71.55 100.00 100.00 100.00s=9.0 21.94 46.11 33.50 59.02 33.42 55.69

Our (App+Time+Est - SIM) s=0.5 86.00 94.50 88.97 100.00 86.48 100.00 100.00 100.00s=9.0 25.16 48.49 36.66 59.50 36.09 60.15
Table 2: Performance comparison on CUHK01, VIPeR, iLIDS-groups and QUEUE02 datasets. We report rank-1 and rank-5 ac-
curacy. Our appearance model outperforms standard metric learning approaches on group datasets. Integrating the temporal
model together with our joint optimization consistently improves the re-identification performance in all datasets.

the true values of τ ∗ and σ ∗. We then compare the performance of
our temporal context model (solid red & green) estimated based on
Algorithm 1. The results illustrate that there is a small performance
drop using our estimation method. Incorporating mutual exclusion
constraints (green) generally leads to improved performance over
independent queries (red).

In Table 2 we report the performance onQUEUE02. This dataset
contains real timestamps, so τ ∗ and σ ∗ are fixed. We use our pro-
posed parameter estimation method to find τ and σ . Temporal
context provides a significant boost in performance compared to
appearance-only methods. Also, mutual exclusion leads to perfor-
mance improvements.

Time Context Parameter Estimation In Section 3.2, we intro-
duced an iterative algorithm to estimate the unknown parameters
τ ∗ and σ ∗. The experiments on iLIDS-groups shown in Fig. 6
confirm that iterative parameter re-estimation improves Rank-1
re-identification accuracy. After three iterations the algorithm con-
verges and further parameter re-estimation does not translate into
improvement in accuracy. Finally, the advantages of iterative param-
eter re-estimation is especially visible for cases with high σ∗ (the
ordering of people between cameras is rarely maintained). In such
cases, the number of examples used for initial parameter estimation
is small and insufficient to accurately estimate τ and σ .

4.4 State-of-the-art comparison
In this section we compare with two most common metric learn-
ing approaches: KISSME [19] and its extension - XQDA [23] that
showed to be very effective while applied to re-identification prob-
lem [30]. We also report the results of [43] that proposed a dedi-
cated descriptor for group re-identification. In Table 2 we report
rank-1 and rank-5 accuracies on several re-identification datasets:
CUHK01, VIPeR which contain well detected individuals, and
group datasets: iLIDS-groups andQUEUE02which contain multi-
ple people and a large amount of occlusion. The order of the datasets
(from left column to right one) reflects the difficulty (e.g. VIPeR con-
tains more variations in pose and image quality than CUHK01, and
QUEUE02 contains significantly larger amount of occlusion than
iLIDS-groups). Notice, that metric learning approaches perform
relatively well on datasets that contain well detected individuals

(CUHK01, VIPeR) but their performance degrades on group datasets
(iLIDS-groups, QUEUE02). Our appearance model (App) ignores
the spatial location of features, thus it is outperformed by metric
learning approaches. However, with increasing difficulty of datasets,
our codebook-based model outperformsmetric learning approaches
as the spatial information of features become less reliable. Notice
that for iLIDS-groups and QUEUE02, our appearance-only model
outperforms all other approaches, illustrating benefits of the pro-
posed coupled clustering method. From Table 2 it is apparent that
integrating the temporal model and using our joint optimization
significantly increases the re-identification accuracy. In addition,
we show that by applying mutual exclusion, we further improve
the Rank-1 and Rank-5 accuracies (compare IND to SIM results).
For datasets with simulated temporal information we also provide
performance for two extreme values of σ ∗. The results indicate that
even if the ordering is rarely maintained (σ ∗ = 9) the proposed joint
optimization still outperforms appearance-only model. The perfor-
mance gain is even stronger when ordering is usually maintained
between cameras (σ ∗ = 0.5).

5 SUMMARY
Many real-world scenarios have large amounts of occlusion and
background clutter. Re-identification methods that require reliable
detection will struggle in these circumstances. We propose a cou-
pled clustering method that learns codebooks with entries that
correspond across cameras and that is robust to both occlusion and
alignment errors. We make use of common movement patterns by
incorporating temporal context into the re-identification process.
We show how the parameters of our model can be estimated from
data, and illustrate the benefit of jointly optimizing appearance
and temporal models. Our experiments demonstrate that methods
based on coupled clustering and temporal context provided sig-
nificant performance gains on challenging group re-identification
datasets. Furthermore, we show how mutual exclusion constraints
between multiple simultaneous queries (to preserve an ordering
preference) also helps improve re-identification performance. Fi-
nally, our method has high practical impact in real-world scenarios,
not only in terms of robustness, but also in usability (high Rank-1
accuracy).
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