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Abstract

In this paper, we address the problem of jointly summa-
rizing large-scale Flickr images and YouTube user videos.
Starting from the intuition that the characteristics of the two
media are different yet complementary, we develop a fast
and easily-parallelizable approach for creating not only
high-quality video summary but also a novel structural sum-
mary of online images as storyline graphs, which can illus-
trate various events or activities associated with the topic in
a form of a branching network. In our approach, the video
summarization is achieved by diversity ranking on the simi-
larity graphs between images and video frames. The recon-
struction of storyline graphs is formulated as the inference
of sparse time-varying directed graphs from a set of photo
streams with assistance of videos. For evaluation, we create
the datasets of 20 outdoor recreational activities, consisting
of 2.7M of Flickr images and 16K of YouTube user videos.
Due to the large-scale nature of our problems, we evaluate
our algorithm via crowdsourcing using Amazon Mechanical
Turk. In our experiments, we demonstrate that the proposed
joint summarization approach outperforms other important
baselines and our own methods using videos or images only.

1. Introduction
The recent explosive growth of online multimedia data

has posed a new set of challenges in computer vision re-
search. One of such infamous difficulties is that much of the
data accessible to users are neither refined nor structured for
later use, and subsequently has led to the information over-
load problem; users are often overwhelmed by the flood of
unstructured pictures and videos, and in danger of getting
lost in the data. Therefore, it is increasingly important to
automatically summarize a large set of multimedia data in
an efficient yet comprehensive way.

In this paper, we address the problem of jointly sum-
marizing large-scale online images (e.g. Flickr) and videos
(e.g. YouTube), especially in terms of storylines. Handling
both still images and videos is becoming more needed, due

Figure 1. Intuition on the benefits of jointly summarizing Flickr
images and YouTube videos with examples of fly+fishing. (a) Al-
though images in a photo stream are taken consecutively, the un-
derlying sequential structure between images is missing, which
can be discovered by help of a crowd of videos. (b) Typical user
videos contain much of noisy and redundant information, which
can be removed using similarity votes cast by a large set of images
that are taken more carefully from canonical viewpoints.

to the recent convergence between cameras and camcorders.
For example, any smartphone users can seamlessly record
their memorable moments via both pictures and videos by
freely switching between them with a single tap.

More importantly, jointly summarizing images and
videos is mutually-rewarding for the summarization pur-
pose, because their characteristics as recording media are
different yet complementary (See Fig.1). The strength of
images over videos lies in that images are more carefully
taken so that they capture the subjects from canonical view-
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points in a more semantically meaningful way. However,
still images are fragmentally recorded, and thus the sequen-
tial structure is often missing even between consecutive im-
ages in a single photo stream. On the other hand, videos
are motion pictures, which convey temporal smoothness be-
tween frames. However, one major issue of videos is that
they contain much of noisy or redundant information with
often poor quality. Therefore, as shown in Fig.1, we take ad-
vantage of sets of images to get rid of such noisy, redundant,
or semantically meaningless parts of videos. In the reverse
direction, we leverage sets of videos to glue fragmented im-
ages into coherent and smooth threads of storylines.

We first collect large sets of photo streams from Flickr
and user videos from YouTube for a topic of interest (e.g.
fly+fishing). We summarize each video with a small set of
keyframes using similarity votes cast by the images from
the most similar photo streams. Subsequently, leveraging
the continuity information between the selected keyframes
of videos, we discover the underlying sequential structure
between images in each photo stream, and summarize the
sets of photo streams in the form of storyline graphs. We
represent the storylines as directed graphs in which the ver-
tices correspond to dominant image clusters, and the edges
connect the vertices that sequentially recur in many photo
streams and videos. The summarization as storyline graphs
is advantageous especially for the topics that consist of a
sequence of activities or events repeated across the photo
and video sets, such as recreational activities, holidays, and
sports events. Moreover, the storyline graphs can character-
ize various branching narrative structure associated with the
topic, which help users understand the underlying big pic-
ture surrounding the topic (e.g. a variety of activities that
people usually enjoy during fly+fishing).

In our approach, the video summarization is achieved by
diversity ranking on the similarity graphs between images
and video frames (section 3). The reconstruction of story-
line graphs is formulated as the inference of sparse time-
varying directed graphs from a set of directed trees created
from photo streams (section 4). As a result, our method pro-
vides several appealing properties, especially for large-scale
problems, such as optimality guarantee, linear complexity,
and easy parallelization.

For evaluation, we create the datasets of 20 outdoor
recreational activities, which consist of about 2.7M images
from 35K photo streams from Flickr and 16K user videos
from YouTube. Due to the large-scale nature of our prob-
lems, we evaluate our algorithms via crowdsourcing using
Amazon Mechanical Turk (section 5). In our experiments,
we quantitatively show that the proposed joint summariza-
tion approach outperforms other baselines and our methods
using videos or images only, for the tasks of video summa-
rization and storyline reconstruction.

1.1. Previous work

Due to volume of literature on the subject, here we dis-
cuss a representative selection of works, from three notable
lines of research, most closely related to our work.

Story-based image summarization: One of most common
ways to summarize large-scale image databases is the im-
age retrieval, with a small number of the most representa-
tive images (e.g. Google and Bing image search engines).
Recent important threads of image summarization work in
computer vision research are as follows. First, there have
been many studies to summarize human’s visual concepts
of general categories with iconic images [6, 18]. Another
important line of work is to group and organize unstruc-
tured community photos of popular landmarks in a spatially
browsable way [20]. Finally, the work of [10] is related to
our work in that it leverages large-scale Flickr images, and
its research objective is motivated by the photo storyline re-
construction. However, [10] is a preliminary research that
solely focuses on the alignment and segmentation of photo
streams; no storyline reconstruction is explored.

Story-based video summarization: The story-based video
summary has been actively studied in the context of
sports [8] and news [16]. However, in this category of work,
the videos of interest usually contain a small number of
specified actors in fixed scenes with synchronized voices
and captions, all of which are not available in unstructured
user images and videos on the Web. The work of [9] may
be one of the closest ones to our work, because images are
used as a prior to create summaries of user-generated videos
on eBay sites. The key difference of our work is that we
complete a loop between jointly summarizing images and
videos in a mutually-rewarding way. Also, our storyline
summaries can support multiple branching structures un-
like simple keyframe summaries of [9]. Recently, the sum-
marization of ecocentric videos [13, 14] has emerged as an
interesting topic, in which compact story-based summaries
are produced from user-centric daylife videos. The objec-
tive of our work differs in that we are interested in the sum-
marization for the collections of online images and videos
that are independently taken by multiple anonymous users,
instead of a single user’s hours-long videos.

Computer vision leveraging both images and videos:
Recently, it is gaining popularity to achieve challenging
computer vision problems by leveraging both images and
videos. Sets of new powerful algorithms have been de-
veloped by pursuing synergic interplay between the two
complementary domains of information, especially in the
areas of adapting object detectors between images and
videos [17, 22], human activity recognition [4], and event
detection [5]. However, the storyline reconstruction ex-
tracted from both images and videos still remains as a novel
and largely under-addressed problem.



1.2. Summary of Contributions

We summarize the contributions of this work as follows.
(1) We propose an approach to jointly summarize large

sets of online images and user videos in a mutually-
rewarding way. Our method creates not only high-quality
video summary but also a novel structural summary of on-
line images as storyline graphs, which can visualize vari-
ous events or activities associated with the topic in a form
of branching networks. To the best of our knowledge, our
work is the first attempt so far to leverage both online im-
ages and videos for reconstructing the storyline graphs.

(2) We develop an approach for video summarization
and storyline reconstruction, which can address several key
challenges of large-scale nature of our problems, includ-
ing optimality guarantee, linear complexity, and easy par-
allelization. With experiments on large-scale Flickr and
YouTube datasets and crowdsourcing based evaluations us-
ing Amazon Mechanical Turk, we show the superiority of
our approach over other candidate methods for both sum-
marization tasks.

2. Problem Setting

Input: The input to our algorithm is a set of photo
streams P = {P 1, · · · , PL} and a set of videos V =
{V 1, · · · , V N}, for a topic class of interest. L and N indi-
cate the number of input photo streams and videos, respec-
tively. Each photo stream, denoted by P l = {pl1, · · · , plLl},
is a set of photos taken in sequence by a single photographer
within a fixed period of time [0, T ] (i.e. single day in this
paper). We assume that each image pli is associated with a
timestamp tli, and each photo stream is sorted by the times-
tamp. We uniformly sample videos into a set of frames, ev-
ery 0.5 sec, which is denoted by V n = {vn1 , · · · , vnNn}. As
a notation convention, we use superscripts to denote photo
streams/videos and subscripts to denote images/frames.

Output: The output of our algorithm is two-fold. The first
output is the summary Sn of every video V n ∈ V (i.e. Sn ⊂
V n). We pursue keyframe-based summarization (e.g. [9]),
in which we choose αn most representative but discrimi-
native keyframes out of all frames V n = {vn1 , · · · , vnNn}.
In our algorithm, αn is automatically chosen according to
the contents of video V n. The second output is the sto-
ryline graphs G = (O, E). Conceptually, the vertices O
correspond to dominant image clusters across the dataset,
and the edge set E ⊆ V × V connects the vertices that se-
quentially recur in many photo streams and videos. More
rigorous mathematical definition will be given in Section 4.

Image Description and Similarity Measure: In order to
capture various visual information, we apply three differ-
ent features extraction methods to images and frames of
videos. We densely extract HSV color SIFT and histogram

of oriented edge (HOG) feature on a regular grid of each
image/frame at steps of 4 and 8 pixels, respectively. We
also obtain the Tiny image feature [23], which is RGB val-
ues of a 32×32 resized tiny image. Then, we build an L1-
normalized three-level spatial pyramid histogram for each
feature type, and concatenate them into a singe vector de-
noted by v. For similarity measure σ, we use the histogram
intersection. The three descriptors are equally weighted.

K-NN graphs between photo streams and videos: Due to
the extreme diversity of the Web images and videos even as-
sociated with the same keyword, we buildK-nearest graphs
between P and V so that only sufficiently similar photo
streams and videos help summarize one another.

For each photo stream P l ∈ P , we find KP -nearest
videos using the similarity calculated by Naive-Bayes
Nearest-Neighbor method [2] as follows. Given a photo
streams P l and a video V n, for each image p ∈ P l,
we obtain the first nearest neighbor in V n denoted by
NN(p). The similarity from P l to V n is computed by∑
p∈P l ‖σ(p,NN(p))‖2. We let N (P l) be the KP -nearest

videos to P l. Likewise, we run the same procedure to ob-
tain KV -nearest photo streams N (V n) for each video V n.

3. Video Summarization

In this section, we discuss how to summarize each video
V i ∈ V by leveraging a large set of images. For summa-
rization of a video V i, we first build a similarity graph be-
tween frames in V i and images of photo streams N (V i),
as shown in Fig.1.(b). We first model consecutive frames
of V i as k-th order Markov chain. Next, each image in
N (V i) casts similarity votes by connecting with its kP -
nearest frames with the weight of feature similarity. Since
most of shared images online are carefully taken by photog-
raphers who try to express his/her experiences and intents
to be as clear as possible, even simple similarity voting by
a crowd of images can discover semantically meaningful
keyframes, which will be demonstrated in the experiments
(Section 5).

Once we build the graph GiV = (U i, E i) where the node
set U i = V i ∪ N (V i), we select αi keyframes as a sum-
mary of V i using the diversity ranking algorithm proposed
in [11], which is formulated as a temperature maximiza-
tion with αi number of heat sources. Intuitively, the sources
should be located in the nodes that are densely connected
to other nodes with high edge weights. At the same time,
the sources should be sufficiently distant from one another
because nearby nodes to the sources already earn high tem-
peratures. We let Gi be the adjacency matrix of GiV . In
order to model the heat dissipation, a ground node g is con-
nected to all nodes with a constant dissipation conductance
z (i.e. appending an |Gi| × 1 column z to the end of Gi).
The optimization of αi keyframe selection can be expressed



by the equation below:

max
∑
x∈Ui

u(x) (1)

s.t. u(x) =
1

dx

∑
(x,y)∈Ei

G(y, x)u(x) for dx =
∑

(x,y)∈Ei
G(y, x)

u(g) = 0, u(s) = 1 for s ∈ Si ⊂ V i, |Si| ≤ αi,

where u(x) is the temperature at x and dx is the degree of
x. The first constraint describes the temperature of each
node observes the diffusion law. The second constraint tells
the temperature of ground and heat sources are 0 and 1, re-
spectively. Si is the set of αi selected keyframes. In [11],
the objective of Eq.(1) is proved to be submodular, and thus
we can compute a constant factor approximate solution by a
simple greedy algorithm, which starts with an empty Si and
iteratively adds the image s that maximizes the marginal
temperature gain, ∆U = U(Si ∪ {s}) − U(Si), where
U(Si) =

∑
x∈Ui u(x) when sources are located in Si. In

our approach, we keep increasing αi until the marginal tem-
perature gain ∆U is below the threshold.

4. Photo Storyline Reconstruction
In this section, we discuss the reconstruction of a story-

line graph G = (O, E) from a set of photo streams P with
assistance of the video set V .

4.1. Definition of Storyline Graphs

Definition of Vertices: Since the image sets are large and
ever-growing, and much of images are highly overlapped, it
is inefficient to build a storyline graph over individual im-
ages. Hence, the vertices O are preferentially defined as
image clusters. For each descriptor type j, we construct
Dj visual clusters (Dj = 600) by applying the K-means to
randomly sampled descriptors. That is, we can obtain J dif-
ferent views of storyline graphs for a given dataset (J = 3
in our case), and each image can be represented as J vectors
x(j) ∈ RDj with only one nonzero value indicating its clus-
ter membership (i.e. identically as a single vector x ∈ RD
by concatenating all J vectors). In addition, we can extend
the model by allowing soft assignment in which an image is
associated with c multiple clusters with weights.

Definition of Edges: In our approach, we let the edge set
E satisfy the following two properties [12, 21]. (i) E should
be sparse. The sparsity is encouraged in order to avoid an
unnecessarily complex narrative structure; instead we retain
only a small number of strong story branches per node. (ii)
E should be time-varying. That is, E smoothly changes over
time in t ∈ [0, T ], because the popular transitions between
images vary over time. For example, in the snowboarding
photo streams, the skiing images may be followed by lunch
images around noon but by sunset images in the evening.

Figure 2. We build the directed tree T l for a photo stream P l with
its nearest videos N (P l). (a) First, the images in P l are repre-
sented by k-th order Markov chain. Then, additional links are con-
nected based on one-to-one correspondences between keyframes
of V j with images in P l. (b) Since the vee structure is an imprac-
tical artifact, it is replaced by two parallel edges.

Based on the two requirements, we obtain a set of time-
specific {At} for t ∈ [0, T ], where At is the adjacency
matrix of Et. Although we can compute At at any point t,
in practice, we uniformly split [0, T ] into τ time points (e.g.
every 30 minutes), at which At is estimated. In addition,
we penalize nonzero elements of each At for sparsity.

4.2. Modeling of Storyline Graphs

In this section, we formulate a maximum likelihood es-
timation for inferring the storyline graph.

Our first step is to represent each photo stream P l as a di-
rected tree T l based on the sequential relevance. Our under-
lying idea is that the consecutive images in a photo stream
are loosely sequential, but their links are not as strong as
those between the frames of a video. As shown in a toy
example of Fig.2, we first represent a photo stream P l as
a k-th order Markov chain. Next, for each neighbor video
V j ∈ N (P l), we choose α keyframes using the algorithm
in section 3. (i.e. α ∝ (length of a video)). We find one-
to-one bipartite matching between the selected frames and
the images in P l using Hungarian algorithm. Then, we ad-
ditionally connect any pairs of images in P l that are linked
by consecutive frames in V j . We assign edge weights by
similarity between images. Finally, as shown in Fig.2.(b),
we replace any vee structure with two parallel edges after
copying image Ic because it is an impractical artifact. That
is, the vee structure occurs only because both Ia → Ic and
Ib → Ic are observed in P l or bypaths via N (P l), not be-
cause Ic appears only after both Ia and Ib occur.

In the current formulation, videos are used only for dis-
covering the edges of storyline graphs, and do not contribute
to the definition of vertices. This is due to that we here limit
the storyline graphs as a structural summary of online im-



ages. However, it is straightforward to include video frames
for the node construction without modifying the algorithm.

We derive our model from the likelihood f(P) of an ob-
served set of photo streams P = {P 1, · · · , PL}. Note that
each image pli in photo stream P l is associated with xli and
timestamp tli. The likelihood f(P) is defined as follows.

f(P)=
L∏

l=1

f(P l), where f(P l) =
∏

xl
i∈P

l

f(xl
i, t

l
i|xl

p(i), t
l
p(i)) (2)

where xlp(i) and tlp(i) denote the descriptor vector and times-
tamp of the parent of xli in the directed tree T l. Note that
without the vee structure, each image has only one parent.
For the transition model f(xli, t

l
i|xlp(i), t

l
p(i)), we use the lin-

ear dynamics model, as one of the simplest transition mod-
els for dynamic Bayesian networks (DBN)

xl
i = Aex

l
p(i) + ε, where ε ∼ N (0, σ2I) (3)

where ε is a vector of Gaussian noise with zero mean and
variance σ2. In order to model temporal information be-
tween tlp(i) and tli as well, we use the exponential rate func-
tion that has been widely used to represent temporal dynam-
ics of diffusion networks [19]: the (x, y) element axy of Ae

has the form of αxy exp(−αxy∆) where ∆ = |tli − tlp(i)|
and αxy is the transmission rate from codeword x to y.
Note that αxy ≥ 0. As αxy → 0, the consecutive oc-
currence from codeword x to y is very unlikely. By let-
ting A = {αxy exp(αxy)}D×D, we have Ae = giA with
gi = exp(−∆), which is computed for each training data.

For better scalability, we impose a practically reasonable
assumption on the transition model: Each codeword of xli
is conditionally independent of another given xlp(i). That
is, the transition likelihood factors over individual code-
words: f(xli, t

l
i|xlp(i), t

l
p(i)) =

∏D
d=1 f(xli,d, t

l
i|xlp(i), t

l
p(i)).

Consequently, from Eq.(3), we can express the transition
likelihood as Gaussian distribution: f(xli,d, t

l
i|xlp(i), t

l
p(i))

= N (xli,d; giAd∗x
l
p(i), σ

2), where Ad∗ denotes the d-th
row of the matrix A. Finally, the log-likelihood log f(P)
in Eq.(2) can be written

log f(P) = −
L∑

l=1

∑
i∈P l

D∑
d=1

f(xli,d) where (4)

f(xli,d) =

(
N l

2
log(2πσ2) +

1

2σ2
(xli,d − giAd∗x

l
p(i))

2

)
4.3. Optimization

Our optimization problem is to discover nonzero ele-
ments of At for any t ∈ [0, T ], by maximizing the log-
likelihood of Eq.(4). For statistical tractability and scalabil-
ity, we take advantage of the constraints and the assumption
described in previous section.

First, one difficulty during optimization is that for a fixed
t, the estimator may suffer from high variance due to the

scarcity of training data (i.e. images occurring at time t). In
order to overcome this, we take advantage of the constraint
that At varies smoothly across time; thus, we can estimate
At by re-weighting the observation data near t accordingly.
Second, thanks to the conditional independence assumption
per codeword dimension, we can reduce the inference of At

to a neighborhood selection-style optimization [15], which
enables to estimate the graph by independently solving a
set of atomic weighted lasso problem for each dimension
of codewords d while guaranteeing asymptotic consistency.
Hence, the optimization becomes trivially parallelizable per
dimension. Such property is of particular importance in our
problem possibly using millions of images. Finally, we en-
courage a sparse solution by penalizing nonzero elements
of At. As a result, we estimate At by iteratively solving
the following optimization D times:

Ât
d∗=argmin

L∑
l=1

∑
i∈P l

wt(i)(xli,d−giAt
d∗x

l
p(i))

2+λ‖At
d∗‖ (5)

where wt(i) is the weighting of an observation of image
pli in photo stream l at time t. That is, when the times-
tamp of pli (i.e. tli) is close to t, wt(i) is large so that the
observation contributes more on the graph estimation at t.
Naturally, we can define wt(i) =

κh(t−tli)∑L
l=1

∑Nl
i=2 κh(t−tli)

where

κh(u) is Gaussian RBF kernel with a kernel bandwidth h
(i.e. κh(u) = exp(−u2/2h2)/

√
2πh).

In Eq.(5), we include `1-regularization where λ is a pa-
rameter that controls the sparsity of Ât

d∗. It not only avoids
overfitting but also is practically useful because the story
branches at each node are simple enough to be easily under-
stood, with only a small number of strong story links. Con-
sequently, our graph inference reduces to iteratively solving
a standard weighted `1-regularized least square problem,
whose global optimum solution can be attained by highly
scalable techniques such as coordinate descent [7]. In sum-
mary, the graph inference can be performed in a linear time
with respect to all parameters, including the number of im-
ages and the number of codewords D. We present the more
details of the algorithm including the pseudocode in the sup-
plementary material.

As of now, we perform the structure learning to discover
the topology of the storyline graph (i.e. nonzero elements
of {At}). We can run the parameter learning (i.e. estimat-
ing actual associated weights) while fixing the topology of
the graph. Since the structure of each graph is known and
all photo streams are independent of one another, we can
trivially solve for MLE of Ât, which is similar to that of the
transition matrix of k-th Markovian chains.

5. Experiments
We evaluate the proposed approach from two technical

perspectives: video summarization in section 5.1 and image
summarization as storylines in section 5.2.



AB (air+ballooning), CN (chinese +new+year), FF (fly+fishing), FO (formula+one), HR (horse+riding), ID (independence+day), LM (london+marathon), MC (moun-
tain+camping), MD (memorial+day), PD (st+patrick+ day), RA (rafting), RC (rock+climbing), RO (rowing), SB (surfing+beach), SD (scuba+diving), SN (snowboarding),
SP (safari+park), TF (tour+de+france), WI (wimbledon), YA (yacht).

Figure 3. The Flickr/YouTube datasets of 20 outdoor recreational classes. (a)–(b) The number of images and photo streams of Flickr
dataset: (2,769,504, 35,545). (c)–(d) The number and total length of YouTube videos: (15,912, 1,586.8 hours).

Flickr/YouTube dataset: Fig.3.(a)–(b) summarize our
Flickr dataset of 20 outdoor recreational activity classes that
consists of about 2.7M images from 35K photo streams.
Some classes are re-used from the datasets of [10], and
the others are newly downloaded using the same crawling
method, in which the topic names are used as search key-
words and all queried photo streams of more than 30 images
are downloaded without any filtering.

Fig.3.(c)–(d) show the statistics of our YouTube datasets
with about 16K user videos. We query the same topic key-
words using YouTube built-in search engines, and down-
load only the Creative Commons licensed videos. In ad-
dition, since YouTube user videos are extremely noisy, we
manually rate them into one of four categories: canonical,
closely/remotely related, and junk. These labels are not used
by the algorithms but for the groundtruth labeling only.

5.1. Results on Video Summarization
Tasks: Due to the large-scale nature of our problems, we

obtain groundtruth labels via crowdsourcing using Amazon
Mechanical Turk (AMT), inspired by [9]. For each topic
class, we randomly sample 100 test videos that are rated as
canonical or closely-related. Then, we uniformly sample
50 frames from each test video, and ask a turker to select
5∼10 images that must be included if he wants to make a
storyline summary. We obtain such summarization of each
test video from at least five different turkers for the valid-
ity of the groundtruth. We run our algorithm and baselines
to select a small number of keyframes as a summary of
each test video. The performance of algorithms is measured
by comparing between the groundtruth labels and selected
keyframes. We compute the similarity-based average pre-
cision (AP) proposed in [9]. We defer the detail of how to
compute the average precision to the supplementary.

Baselines: We select four baselines based on the recent
studies of video summarization [9, 13, 14]. The (Unif)
samples α keyframes uniformly from each test video. The
(KMean) and the (Spect) are the two popular cluster-
ing methods, K-means and spectral clustering, respectively.
They first create α clusters and select the images closest
to the cluster centers. The (RankT) is one of state-of-
the-art keyframe extraction methods using the rank-tracing
technique [1]. The (OursV) is our discriminative ranking

method described in section 3 without involving similarity
votes by images. It is compared with our fully-geared algo-
rithm (OursIV) in order to justify the usefulness of joint
summarization between images and videos.

Results: Fig.4 reports the average precisions of our al-
gorithms and baselines across 20 activity classes. Our al-
gorithm significantly outperforms all the baselines in most
classes. (e.g. The average AP of the (OursIV) is 0.0893,
which is notably higher than 0.0808 of the best baseline
(KMean) by 9.5%. The performance of the (KMean) and
the (Spect) highly depends on the number of clusters α.
We change α from 5 to 25, and report the best results.

Fig.5 compares video summarization results produced
by different methods. The (Unif) cannot correctly han-
dle different lengths of subshots in a single video (i.e. re-
dundant images can be selected from long subshots while
none from interesting short ones). One practical shortcom-
ing of the (KMean) and the (Spect) is that it is hard to
know the best α beforehand even though the performance
highly depends on α. Overall, all algorithms except the
(OursIV) suffer from the limitations of using low-level
features only. For example, as shown in Fig.5.(a), the
(OursV) and the (KMean) detect meaningless completely-
gray sky frames in 3rd and 5th column, respectively. Such
frames with no semantic meaning occur frequently in user
videos, whereas very few in the image sets. Therefore, even
though (OursIV) uses the same low-level features, it can
easily suppress such unimportant information thanks to the
similarity votes produced by images that photographers take
more carefully with sufficient semantic intent and value1.

5.2. Results on Photo Storyline Summarization
Task: The quantitative evaluation on the storyline re-

construction is inherently difficult because there is no
groundtruth available. Moreover, it is painfully overwhelm-
ing for a human labeler to evaluate the storylines summa-
rized from large sets of images. (e.g. Given multiple sto-
ryline graphs with hundreds of nodes created from millions
of images, a human labeler may feel hopelessly devastated
to judge which one is better). In order to overcome such
inherent difficulty of the storyline evaluation, we design the

1 Unfortunately, such semantic significance is not fully evaluated by the
AP metric of Fig.4, which is solely based on low-level feature differences.



Figure 4. Comparison of average precisions (APs) between our methods (OursIV) and (OursV) and the baselines (Unif), (KMean),
(Spect), and (RankT). The acronyms of activities are referred to Fig.3. The leftmost bar set shows the average APs for all classes.
(OursIV): 0.0893, (OursV): 0.0880, (Unif): 0.0776, (KMean): 0.0808 (Spect): 0.0795, and (RankT): 0.0740.

Figure 5. Qualitative comparison of video summarization results. From top to bottom, we show AMT groundtruth and the same number of
selected keyframes by our algorithms (with and without similarity voting by images), and two baselines (KMean) and (Unif).

following evaluation task via crowdsourcing.
We first run our algorithms and baselines to generate sto-

ryline graphs from the dataset of each class. We then sample
100 canonical images on the timeline as test instances IQ.
Based on the reconstructed storyline, each algorithm can re-
trieve one image that is most likely to come next after each
test image Iq ∈ IQ. (i.e. We first identify which node cor-
responds to the Iq , and follow the most strongly connected
edge to the next likely node, from which the central image is
retrieved). For evaluation, a turker is shown the test image
Iq , and then a pair of images predicted by our algorithm and
one of baselines, and asked to choose the one that is more
likely to follow Iq than the other. We design the AMT task
as a pairwise comparison instead of a multiple-choice ques-
tion (i.e. selecting the best one among the outputs of all
algorithms). We obtain such pairwise comparison for each
of IQ from at least three different turkers. In summary, the
underlying idea of our evaluation is that we let a crowd of
labelers, each of whom evaluates only a basic unit (i.e. an
important edge of the storyline), instead of the assessment
of the whole storyline, which is practically impossible.

Baselines: We compare three baselines with our ap-
proach. The first (Page) is a Page-Rank based image
retrieval that simply selects the top-ranked image around
the timestamp of Iq . It is compared to show that the se-
quential summary as storylines can be more useful than
the traditional retrieval method. The (HMM) is an HMM
based method that has been popularly applied for model-
ing tourists’ sequential photo sets [3]. This comparison can
tell the importance of our branching structure over the linear
storyline of the (HMM). The (Clust) is a simple clustering-
based summarization on the timeline [10], in which images

are distributed on the timeline of 24 hours, and grouped into
10 clusters at every 30 minutes. We also compare with the
our algorithm using images only, denoted by (OursI), in
order to quantify the improvement by joint summarization
with videos. We present more details of application of our
algorithm and baselines in supplementary material.

Results: Fig.6 show the results of pairwise preference
tests obtained via AMT between our algorithm and each
baseline. The number indicates the mean percentage of re-
sponses that choose our prediction as a more likely one to
come next after each Iq than that of the baseline. That is,
the number should be higher than at least 50% to validate
the superiority of our algorithm. Even considering a certain
degree of unavoidable noisiness of AMT labels, our output
is significantly preferred by AMT annotators. For exam-
ple, our algorithm (OursVI) gains 75.9% of votes, far out-
distancing the best baseline (HMM). Importantly, more than
two thirds of responses (i.e. 67.9%) prefer the results of the
(OursVI) over those of the (OursI), which indeed sup-
ports our argument that a crowd of videos help improve the
quality of the storylines from users’ point of view.

Fig.7 illustrates another interesting qualitative compar-
ison between our method and baselines. Given a pair of
images that are distant in a novel photo stream (i.e. im-
ages with red boundaries in Fig.7.(a)), each algorithm pre-
dicts 10 images that are likely to occur between them using
its own storyline graph (i.e. each algorithm finds out the
best path between the two images). As shown in Fig.7.(a),
our algorithm (in the second row) can retrieve the images
that are very similar to the hidden groundtruths (in the first
row). Using the iterative Viterbi algorithm, the (HMM) re-
trieves reasonably good but highly redundant images, which



Figure 6. The results of pairwise preference tests between our method (OursIV) and each baseline via Amazon Mechanical Turk. The
numbers indicates the percentage of responses that our prediction is more likely to occur next after Iq than that of the baseline. At least the
number should be higher than 50% (shown in red dotted line) to validate the superiority of our algorithm. The leftmost bar set shows the
average preference of our (OursIV) for all 20 classes: [67.9, 75.9, 76.1, 77.1] over (OursV), (HMM) , (Page) , and (Clust).

Figure 7. Examples of an qualitative comparison between our method and baselines. (a) Given a pair of distant images in a photo stream
(i.e. the ones with red boundaries), each algorithm predicts the best path between them, and samples 10 images. (b) A downsized version
of our storyline graph that is used for the prediction of (a).

are in part due to its inability to represent various branch-
ing structures. The (Page) retrieves top-ranked images (i.e.
representative and high-quality images) at each query time
point. However, it has no use of the sequential structure, and
thus there is no connected story between retrieved images.
Fig.7.(b) shows a downsized version of our storyline graph
that is used for creating the result of Fig.7.(a). Although we
can freely choose the temporal granularity to zoom in or out
the storylines, we here show only a small part of them for
better visibility. We present more illustration examples of
storyline graphs in the supplementary.

6. Conclusion
In this paper, we proposed a scalable approach to jointly

summarize large-scale Flickr images and YouTube videos,
and created a novel structural summary as storyline graphs
visualizing a variety of underlying narrative branches of
topics. We validated the superior performance of our ap-
proach via the evaluation using Amazon Mechanical Turk.
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