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Abstract— In this paper we examine joint torque tracking
as well as estimation of external torques for the KUKA
Lightweight Robot (LBR) IIWA. To support physical human-
robot interaction tasks, we need smooth estimation that allows
detection of delicate external events and good control to hide
inertial forces. Unfortunately a transmission nonlinearity in
the motor to joint gearing injects vibrations and limits the
performance of the built-in torque controller and observer. We
confirm the nonlinearity to be a spatially periodic deflection be-
tween the motor and joint. Identification of this behavior allows
us to generate more accurate joint position measurements. We
also design a matching spatial filter to remove the vibrations
from joint torque measurements. Experiments on an LBR IIWA
show that compensating for the nonlinearity provides smoother
external torque estimates and improves the torque tracking
performance. Furthermore, we are able to increase the gain
margin more than three fold over the built-in controller.

I. INTRODUCTION

The KUKA LBR IIWA, as seen in Fig. 1, is an industrial
seven degree of freedom (DOF) serial manipulator intended
for human-robot collaboration. It provides a suite of safety
features that have allowed its certification to operate in
human proximity [1], [2]. It also utilizes series elastic ele-
ments and benefits from a rich history of torque control and
estimation reaching back to work at the German Aerospace
Center DLR [3]. We are integrating the LBR into physical
human-robot interaction tasks, which require accurate, stable
and smooth control of joint torque and high sensitivity in
detection of externally applied torques.

The LBR incorporates joint torque sensing, which it uses
to control the internal and estimate any external torques.
Close examination shows that the LBR has a nonlinearity

Fig. 1. The KUKA LBR IIWA with an ATI 6-axis Mini45 F/T sensor
attached to the end-effector for measuring external torques. All data is given
for the base joint, with the links arranged for maximum inertia as shown.
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Fig. 2. External torque as reported by the FRI when sinusoidal torque
profile was commanded to the built-in torque controller and no external
torque was applied. It can be seen that the reported external torque estimates
show large velocity dependent fluctuations and the velocities themselves
show significant vibrations.

in the motor to joint gearing which negatively impacts the
performance of the torque control and observer. For example,
in Fig. 2 we see external torque estimates obtained while the
LBR moved without contact. At high speed the transmission
nonlinearity causes vibrations, which the algorithm interprets
as external torques.

Fortunately, KUKA provides a Fast Robot Interface (FRI)
that allows implementing external controllers at up to 1kHz
loop rates. In this work we analyze the transmission non-
linearity and design adjustments to the measurements, con-
troller, and estimation accordingly. In particular, we find a
position dependent, spatially periodic deflection between the
motor and joint angles, consistent with an eccentric motor
to joint relationship. This allows us to compute an improved
joint position estimate.

We also design a spatial filter to mitigate the fluctuations in
the torque signals. Experiments conducted on an LBR IIWA
show that leveraging the series elastic model, correcting
for the transmission nonlinearity using a lookup table, and
spatial filtering significantly improve the external torque
estimates. Finally we create an additive controller using the
spatially filtered joint torque for feedback, which improves
the torque tracking performance and triples the gain margin.

II. LBR IIWA REVIEW AND MODELING

A. LBR IIWA Review

The KUKA LBR IIWA is a serial robotic arm with seven
DOF and each joint is driven via a series elastic element con-



necting the motor and harmonic gear reducer to rigid links.
Both motor position and joint or series elastic torques are
sensed [1]. Additionally, a built-in external torque observer
gives gravity canceled estimates of externally applied torques
for each joint. KUKA provides a Fast Robot Interface (FRI)
which allows real-time control of the LBR at up to 1kHz
control loop rates [4]. The FRI can be switched between
position or torque control modes, accepting commands for
motor position or joint torque respectively. The torque com-
mands are passed through a feasibility filter which imposes
a maximum slew rate and torque control is suppressed when
starting from zero velocity at torque levels below 1Nm.

Many torque control schemes have been proposed for
physical human-robot interaction using the LBR or simi-
lar compliant manipulators ([5], [6], [7]). Geravand et al.
similarly pursued physical human-robot interaction with a
KUKA KR5 industrial manipulator using a closed control
architecture [8]. In addition, previous works on LBR IIWA
and it’s predecessor LWR 4+ have reported full rigid body
link dynamics [9], [10]. In the following, we focus on the
low level motor motions and the associated nonlinearity that
are the source of the problematic vibrations. As such, we
isolate a single joint and present all data for the base joint
with the other links arranged as shown in Fig. 1.

B. Joint Model

Using a lumped parameter model for a series elastic
actuator ([11], [12]) and noting that motor friction and inertia
are compensated by the internal torque controller [13], the
system equations for a single joint with controlled inertia
and damping can be written as:

Jcs2
θ j =

(bcs+K)

K
(τc− τJ) (1)

Jls2
θl = τJ + τext (2)
τJ = K(θ j−θl) (3)

where
Jl : Link inertia
Jc : Controlled motor inertia
bc : Controlled motor friction
K : Series elastic stiffness
θ j : Joint position
θl : Link position
τc : Commanded torque to the internal controller
τJ : Series elastic joint torque

τext : External torque

The FRI further adds a constant input delay of Td = 5ms.
The transfer function from τc to τJ is given as:

τJ(s)
τc(s)

= e−Tds Jl(bcs+K)

JcJls2 + Jlbcs+(JcK + JlK)
(4)

We performed a frequency domain system identification
using an exponential chirp excitation signal to estimate the
transfer function parameters [14]. Fig. 3 shows the transfer
function fit to the experimental frequency response. The
identified values of the parameters are listed in Table I.

TABLE I
IDENTIFIED TRANSFER FUNCTION PARAMETERS

Jc : 1.03 kgm2

bc : 55 Nms/rad
K : 18500 Nm/rad
Jl : 5.6 kgm2
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Fig. 3. Experimental frequency response and fitted transfer function
response between commanded (τc) and measured joint torque (τJ).

III. TRANSMISSION NONLINEARITY

From Fig. 2 we have observed repeatable and velocity
dependent joint vibrations. This is further illustrated in Fig. 4
where we see the vibration frequency correlate to joint
velocity. The following experiments confirm a transmission
nonlinearity in the LBR IIWA between the motor and joint,
which causes fluctuations in their relative position.

A. Model

While the mechanical cause is unclear, the nonlinearity
is consistent with eccentric gearing or a fluctuating gear
reduction. We highly exaggerate this in the illustration in
Fig. 5. The motor position maps to the joint position as

θ j = θm− f (θm mod ρ) (5)

where the variation f () repeats every ρ = 0.01963 rad.

B. Identification

We identified the nonlinearity both quasi-statically and
dynamically. Statically, we commanded a constant torque and
used a precision external measurement of the link position
to deduce θ j = θl−τJ/K. Fig. 6 graphs θm−θ j vs. θm under
three commanded loads.

We further confirmed the data in dynamic tests. Moving
the link at a high speed of θ̇l=1.2 rad/s, the fluctuations occur
at a frequency

f =
θ̇l

ρ
= 61Hz (6)
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Fig. 4. Torque ripples change in frequency with velocity.

1 1

A

B

A

B

12

Full Assembly

SHEET 1 OF 1SCALE: 1:10 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

FINISH

MATERIALPROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
THE WALT DISNEY COMPANY.  ANY 
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
THE WALT DISNEY COMPANY IS 
PROHIBITED.

2

✓m

✓j

Figure 1: The title

Here is a figure:
Wow, that was cool.

Motor (✓m)

Joint (✓j)

Link (✓l)

1

✓m

✓j

Figure 1: The title

Here is a figure:
Wow, that was cool.

Motor (✓m)

Joint (✓j)

Link (✓l)

1

✓m

✓j

Figure 1: The title

Here is a figure:
Wow, that was cool.

Motor (✓m)

Joint (✓j)

Link (✓l)

1

✓m

✓j

Figure 1: The title

Here is a figure:
Wow, that was cool.

Motor (✓m)

Joint (✓j)

Link (✓l)
Series Elasticity
Nonlinearity

1

✓m

✓j

Figure 1: The title

Here is a figure:
Wow, that was cool.

Motor (✓m)

Joint (✓j)

Link (✓l)
Series Elasticity
Nonlinearity

1

✓m

✓j

Figure 1: The title

Here is a figure:
Wow, that was cool.

Motor (✓m)

Joint (✓j)

Link (✓l)
Series Elasticity
Nonlinearity

1

Fig. 5. A fluctuating gear reduction between the motor and joint could be
the cause of the observed nonlinearity, which causes a periodic deflection
between the joint and motor positions.

At this high frequency the series elastic stiffness K and link
inertia Jl mostly block the fluctuations from affecting the
link. The link fluctuations δθl can be estimated from the
joint fluctuations δθ j as

δθl ≈
K

Jl(2π f )2 δθ j = 0.0224 δθ j (7)

so that less than 2.3% of the fluctuations reach the link. In
essence, we can assume the large link inertia holds the link
velocity constant. This assumption then allows us establish θ j
independently of θm, using only joint torque measurements.
The results are overlaid on Fig. 6. We see the periodic nature
of the transmission nonlinearity holds true and matches well
in both cases.

We note that the experimentally identified period ρ =
0.01963 rad also matches 327680 encoder ticks, where each
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Fig. 6. Plots show variation of θm − θ j w.r.t. θm for quasi-static linear
link motion against a constant commanded torque, and constant velocity
motion under no external torque. Note that constant velocity data is wrapped
around by plotting against (θm mod ρ) and shifted to match the phase with
quasi-static data. Difference between motor (θm) and joint position (θ j) is
observed to be periodic with motor position. The period ρ was determined
to be 0.01963 rad.

encoder tick is determined by the quantization of the sensor,
which was determined to be 5.989×10−8 rad.

C. Position Measurement Adjustment

The transmission nonlinearity affects the joint and link,
with their positions determined from the motor position and
joint torque measurements as

θ j = θm− f (θm mod ρ) (8)

θl = θm− f (θm mod ρ)− 1
K

τJ (9)

where we implement f (θm mod ρ) as a lookup table fitted
to the experimental data.

D. Spatial Torque Filtering

Of course, the position fluctuation also impacts the joint
torque. Though the exact magnitude and phase of any torque
ripples depends on relative motor and joint inertia and
friction, the frequency is directly proportional to speed. In
Fig. 4 we see the vibrations slow exactly as the velocity
slows.

We use knowledge of fixed spatial frequency to filter out
torque variations due to the position fluctuations. First we
define the spatial bandpass filter to isolate the fluctuations:

Hripple(p) =
βω p

p2 +βω p+ω2 (10)

where p is the spatial Laplace transform of d/dx. We then
apply the filter twice to increase the rolloff before subtracting
from the original signal

H f ilt = 1− (γHripple)
2 (11)

We inject the parameter:

γ =

1.0 if |θ̇ j| ≥ vmin

|θ̇ j|
vmin

if |θ̇ j|< vmin
(12)

to limit filtering at slow speeds.



To implement we need to discretize the spatial filter. By
definition a uniform spatial sampling is not possible, so
we implement non-uniform spatial but uniform temporal
sampling. A discrete time implementation is:

Hripple(z) =
N(z)
D(z)

, where

N(z) = (2βω∆)− (2βω∆)z−2,

D(z) = (4+2βω∆+ω
2
∆

2)+(2ω
2
∆

2−8)z−1

+(4−2βω∆+ω
2
∆

2)z−2,

where ∆ is the absolute change in joint position at any given
time, ω = 2π/ρ is the spatial frequency of the fluctuations,
and the parameter β decides the sharpness of the filter chosen
to be 5.0.

In essence, this spatial filter matches a temporal filter with
varying notch frequency of ωn = (2π/ρ)θ̇ j. As such, at low
velocity the filter interacts with the controller. We thus pick
vmin = 0.2 rad/s, which limits filtering below the frequency
of (2π/ρ)vmin = 10 Hz.

IV. EXTERNAL TORQUE ESTIMATION

The external torque estimates provided by the FRI use a
disturbance observer introduced in [3], which for the single
DOF case can be written as:

τ̂ext(t) = KI

[
p(t)−

∫ t

0
(τJ + τ̂ext)dt− p(0)

]
(13)

p(t) = Jl θ̇l , τ̂ext(0) = 0

where τ̂ext(t) is the external torque estimate. The value of
observer gain KI was identified to be 25 rad/s. We note the
built-in observer ignores the series elastic compliance and
uses θ̇ j in place of θ̇l in (13). We are thus able to inject
two improvements. First we utilize (9) to obtain the most
accurate link velocity estimate in (13). Second, to remove
the torque fluctuations we filter the torque estimate τ̂ext with
the above spatial filter.

τ̂ext, f ilt = H f ilt τ̂ext (14)

Fig. 7 compares estimates from various observers against
the externally measured torque from an ATI mini45 6-axis
F/T sensor attached to the end-effector. The robot arm was
moved by hand under zero commanded torque. Using link
velocity instead of motor velocity as described in (9) im-
proves the estimates over built-in observer. Filtering further
improves the estimates.

V. TORQUE CONTROL

As the transmission nonlinearity injects fluctuations into
the torque measurements, it also limits the built-in torque
controller. We thus design and tune an additive torque
controller to help increase damping, provide better tracking,
and ultimately increase gain margins. In the following, we
compare the nominal built-in controller to the additive design
using step and sine wave inputs. Also, we use an external
torque sensor to close the loop around both torque controllers
and show that the additive controller can give ∼3x higher
gain margin as compared to the built-in controller.
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Fig. 7. Plots show external torque estimates from the built-in observer, the
observer using adjusted link velocity (τ̂ext ), the spatially filtered estimate
(τ̂ext, f ilt ), and an external torque measurement. The torque command τc was
set to 0 and the robot arm moved externally by hand.

A. Built-in Torque Controller

In using the built-in controller, we set the commanded
torque τc to a reference input τr. From the previous sys-
tem identification, the poles are located at (-27.5 ± 143i,
ωn=23.24Hz, ζ =0.188). It can be seen from Fig. 8a that the
response is underdamped with ∼ 40% overshoot. We also
note that the natural frequency of 23Hz overlaps with the
fluctuations if the arm is moving at a reasonable speed of
0.5 rad/s.

B. Additive Torque Controller

For the additive controller, we replace the delay in (4)
with a 2nd order Padé approximation and design a full state
observer and controller. The transfer function can be written
as:

τJ(s)
τc(s)

=

(
s2− c1s+ c2

s2 + c1s+ c2

)
Jls2(bcs+K)

JcJls4 + Jlbcs3 +(JcK + JlK)s2

where c1 = 1200 and c2 = 480000. The remaining parameters
are specified in Table I. Using the spatial filter in (11), a
filtered joint torque estimate τJ, f ilt can be obtained:

τJ, f ilt = H f iltτJ (15)

A full state observer and controller can be expressed as

τ f b =−KFSF X̂ +Krτr (16)
˙̂X = AX̂ +Bτ f b +L(τJ, f ilt −CX̂) (17)
τc = τ f b + τ f f (18)
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Fig. 8. Step responses: We show the reference input, and joint torque in both controllers. The spatially filtered joint torque (τJ, f ilt ) is also shown for the
additive torque controller.
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(a) Built-in torque controller, τr frequency = 0.25Hz
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(b) Additive torque controller, τr frequency = 0.25Hz
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Fig. 9. Sinusoidal reference torque waveform tracking with built-in controller and additive controller is shown for low (0.25Hz) and high (25Hz) frequency
profiles. We see the built-in controller become unstable to a 25Hz input.



where

A =



0 0 0
(
−c2K(

1
Jl
+

1
Jc
)

)
1 0 0

(
−c1K(

1
Jl
+

1
Jc
)− c2

bc

Jc

)
0 1 0

(
−K(

1
Jl
+

1
Jc
)− c1

bc

Jc
− c2

)
0 0 1

(
−bc

Jc
− c1

)


, (19)

B =

[
c2

K
Jc

(c2
bc

Jc
− c1

K
Jc
) (

K
Jc
− c1

bc

Jc
)

bc

Jc

]T

, (20)

C =
[
0 0 0 1

]
(21)

and

τ f f (s) = τr(s)
JcJls2 + Jlbcs+(JcK + JlK)

Jl(bcs+K)
(22)

The poles of the full state feedback controller are placed
at (-180 ± 30i, ωn=28.96Hz, ζ =0.986) and (-500 ± 1i,
ωn=79.58Hz, ζ =1.0). Observer poles are placed at (-620,
ωn=98.68Hz, ζ =1), (-630, ωn=100.27Hz, ζ =1), (-1000,
ωn=159.16Hz, ζ =1) and (-1010, ωn=95.65Hz, ζ =1). This
gives the controller gains as:

KFSF = diag(2.298×10−8s3,−4.367×10−6s2,

1.339×10−3s1,−0.1516)
L = [3.843×1011s−4,1.996×109s−3,3.346×106s−2,

2.005×103s−1]T

Kr = 0.9636.

Since the controller is designed around the built-in controller,
it is an additive torque controller.

The step responses in Fig. 8b shows a slight increase in
damping, with some overshoot resulting from the nonlinear
spatial filter.

C. Torque Tracking Performance

Sinusoidal reference torque profiles of A = 5Nm at f =
0.25Hz and A = 15Nm at f = 25Hz were used to test the
tracking performance of the both controllers. Figs. 9a and 9b
show the response for the f = 0.25Hz profile. We see that
while the unavoidable spatial fluctuations cause similar peak-
to-peak errors for both controllers, the additive torque control
scheme centers the mean error about zero.

Figs. 9c and 9d show the response for the f = 25Hz
profile. Here the built-in controller displays growing oscilla-
tions and settles with a large tracking error. Clearly the input,
natural frequency, and fluctuations are interacting poorly. The
additive torque controller however is still able to track with
τJ, f ilt tracking error < 5 Nm and τJ tracking error < 10 Nm.

Finally, we attached an external force/torque sensor to the
end-effector and used a direct τr = κτext controller to reduce
residual friction and inertial torques. The built-in controller
started showing instabilities at a gain of κ = 4.6. Fortunately

the additive controller remained stable through κ = 15. This
more than triples the gain margin and means an external
torque controller could hide three times the inertia in a
physical interaction.

VI. CONCLUSION

In this paper we examined joint torque tracking for the
KUKA LBR IIWA for physical human-robot interaction
tasks. We found a transmission nonlinearity that creates
substantial fluctuations and vibrations in both position and
torque measurements. Fortunately the nonlinearity is spa-
tially periodic and a simple lookup table can adjust/fix the
position measurements. We were also able to design a spatial
filter to remove vibrations from any torque signals.

Together, we were able to recover a smooth external torque
observer and design an additive torque controller to improve
performance and three fold increase gain margins.

We are finding the increased sensitivity invaluable in cre-
ating effective physical human-robot interactions and hope
others may similarly leverage the benefits.
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[11] A. Albu-Schäffer, C. Ott, and G. Hirzinger, “A unified passivity-
based control framework for position, torque and impedance control of
flexible joint robots,” The International Journal of Robotics Research,
vol. 26, no. 1, pp. 23–39, 2007.

[12] D. W. Robinson, J. E. Pratt, D. J. Paluska, and G. A. Pratt, “Series
elastic actuator development for a biomimetic walking robot,” in
IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics. IEEE, 1999, pp. 561–568.

[13] L. Le Tien, A. Albu-Schaffer, A. De Luca, and G. Hirzinger, “Friction
observer and compensation for control of robots with joint torque
measurement,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2008, pp. 3789–3795.

[14] V. Chawda and G. Niemeyer, “Toward controlling a kuka lbr iiwa for
interactive tracking,” in IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2017.


