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Abstract
To date, multiple strategies have been proposed for the estima-
tion of speakers’ physical parameters such as height, weight,
age, gender etc. from their voices. These employ various types
of feature measurements in conjunction with different regres-
sion and classification mechanisms. While some are quite ef-
fective for adults, they are not so for children’s voices. This is
presumably because in children, the relationship between voice
and physical parameters is relatively more complex. The vocal
tracts of adults, and the processes that accompany speech pro-
duction, are fully mature and do not undergo changes within
small age differentials. In children, however, these factors
change continuously with age, causing variations in style, con-
tent, enunciation, rate and quality of their speech. Strategies
for the estimation of children’s physical parameters from their
voice must take this variability into account. In this paper, us-
ing different formant-related measurements as exemplary anal-
ysis features generated within articulatory-phonetic guidelines,
we demonstrate the nonlinear relationships of children’s physi-
cal parameters to their voice. We also show how such analysis
can help us focus on the specific sounds that relate well to each
parameter, which can be useful in obtaining more accurate esti-
mates of the physical parameters.
Index Terms: children’s voices, age prediction, height, weight,
gender estimation, physical characteristics, voice biometrics

1. Introduction
This paper addresses the problem of estimating children’s phys-
ical parameters – specifically height, weight, age and gender
– from their voices. There is a growing body of scientific
literature on such anthropometric deductions from voice, e.g.
[1, 2, 3, 4, 5, 6]. However, most of these studies have been al-
most exclusively carried out on adult voices. Children’s voices
have only been studied in relation to their age and various de-
fects (such as stuttering) and medical pathologies, but not in
relation to such deductions. The reasons may be threefold. The
first is that anthropometry [7] itself has had very specialized use
thus far in fields such as archeology, forensics etc., wherein it
has particular relevance in the reconstruction of the body struc-
ture of the individual from partial evidence. Lately, there has
been a renewed interest on making anthropometric deductions
from voice, particularly in aid of automated applications that
could benefit from being able to dynamically adjust to the phys-
ical dimensions of different users. The second reason could be
the paucity of good data due to legal and societal difficulties
in obtaining children’s speech samples and their physical mea-
surements for study. The third reason is presumably the inade-
quacy of small amounts of children’s data to represent the full
range of voice-related phenomena exhibited within this popu-
lation. Since children’s voice changes very rapidly with age,
more data and more equitable distribution of data across ages is

required to enable studies that could be regarded as statistically
significant or conclusive.

There are other issues with existing studies that restrict their
applicability to children’s voices. Most prior studies assume or
derive linear relationships between the speaker parameters and
the features derived from speech signals. In cases where they
do model the non-linear relationships using parametric or non-
parametric models, such as [8, 9], they use aggregate statistics
derived from features computed over the entire speech signal,
without regard to the types of sounds in the signal [10]. Others
use human judgment for analysis [11, 12]. Many studies focus
on the correlations of physical parameters of the speaker with
certain categories of sounds in speech – such as vowels [13],
but these studies do not cover a comprehensive analysis of all
the sounds in speech.

In our paper, we analyze the effects of children’s physical
parameters on all the compositional units of speech. We devise
a strategy based on articulatory-phonetic principles and non-
parametric regression models to study these relations in order to
understand the nature of these relationships. Our articulatory-
phonetic approach is predicated on the broad assumption that
since the vocal tract is part of the extremely complex human bi-
ological system, every factor that affects this system also affects
the parameters of the vocal tract, influencing the synergy, extent
and rate of the physical movements of its articulators.

Our studies are conducted on a phonetically rich database
of children’s voices collected in-house by Disney Research,
where children were asked to repeat sentences spoken by an
adult prompter. The recordings were made in a studio environ-
ment using high quality far-field microphones, since children do
not like to wear close-talking microphones and will often tam-
per with them, causing recording disturbances. Their biomet-
ric parameters were measured on-site prior to their recording
sessions. We call this database the Copycat database. For our
study, we derive formant measurements from speech of chil-
dren from 4-10 years of age, since they are known to corre-
late reasonably well in adults with their height, weight, age etc.
Our experiments on Copycat bring out interesting relationships
between children’s height, weight, age and gender, and their
voice. The relationships appear to be complex, as expected, of-
ten specific to the particular dynamics of the vocal tract as rep-
resented by different categories of articulatory-phonetic units
that constitute speech. Also, as expected, we see that certain
subsets of articulator configurations are indeed affected by dif-
ferent physical characteristics more than others, while others
remain justifiably (from computational and acoustic-phonetic
speech production viewpoints) unaffected. Moreover, these
subsets are different for different types of physical parame-
ters. We determine that even within individual utterances, the
correct articulatory-phonetic units are frequently sufficient to
predict the child’s physical measurements. Furthermore, pre-
dictions made by combining evidence from the correct group



of phonemes can be significantly superior to predictions made
from aggregate characterizations of the signal that do not con-
sider phonetic distinctions.

2. Analysis strategy
There are five components that play a pivotal role in our strat-
egy. These are 1) the compositional acoustic units of speech, 2)
the features that capture their key characteristics and help dis-
ambiguate between them, 3) the statistical models that we use
to learn these effects quantitatively, 4) the manner in which we
measure the features, and 5) the manner in which we use the
outcomes of the modeling process. In this section we describe
each of these aspects briefly.

2.1. Phonemes and articulatory-phonetic categorizations

In articulatory-phonetics, sounds with consistent spectral pat-
terns are recognized as the basic compositional units of speech,
or phonemes. Each phoneme is produced by the modulation of
sound through a specific set of articulator configurations in the
vocal tract [14]. Words in any language are produced by enun-
ciating specific sequences of phonemes.

In English, phonemes are divided into two broad categories
– vowels and consonants, and two other categories that in-
volve some intersections of these – semivowels and diphthongs.
Based on the manner of articulation and voicing (i.e. whether
or not the vocal folds vibrate in the production of the sound),
the consonant categories that we consider in this work are 1)
Plosives: B D G (voiced) P T K (unvoiced), 2) Affricates: V
DH Z ZH (voiced) F TH S SH HH (unvoiced), 3) Fricatives:
JH (voiced) CH (unvoiced), 4) Nasals: M N NG (voiced), 4)
Liquids: L R (voiced), and 5) Glides: Y W (voiced). For vow-
els, the categorizations are given more explicitly in Fig. 1(a).
The list shown is narrowed to those typical of North American
English only. Note that we use a non-conventional notation for
phonemes - they are denoted in uppercase or lowercase sym-
bols as required to maximize clarity of presentation. Vowels are
termed high, mid or low depending on the position of the jaw,
and front, middle and back depending on the location of articu-
lation in the mouth. Tense and lax vowels differ in the amounts
of stress placed on the articulators, while rounded vowels in-
volve some rounding of the lips.

(a) (b)

Figure 1: (a) Vowels in North American English, as represented
in the CMU Sphinx ASR system. (b) HMM-generated seg-
ments of the phoneme AA in two words.

2.2. Formants and formant-related features

In the production of different sounds, the human vocal tract is
shaped into different configurations by the movement of the ar-
ticulators. Formants are the resonant frequencies of each of
these configurations. In this paper we choose to illustrate our
strategy for the estimation of physical parameters through for-
mants and formant-related measurements. Prior studies have

shown that these can be extremely useful in understanding the
manner in which different physical parameters that affect voices
of adult humans, e.g. [15, 16, 17, 18, 19, 20], or even animals
[21]. We describe the different formant-related measurements
that we use in this study below:

2.2.1. Formant position

This is merely the peak frequency of a formant. The formants
are numbered by convention – the formant with the lowest fre-
quency is called F1, the second lowest frequency formant is
F2, the next is F3 and so on. Up to five formants (F1−F5) are
typically observable in the spectrograms of children’s speech.

2.2.2. Formant bandwidth

Formant bandwidth is defined as spread of frequencies around
any formant within which the spectral energy remains within
3db of the formant’s peak energy. While formant bandwidths
are not known to play a role in disambiguating phonemes, they
carry information about the speaker’s vocal tract composition,
such as the elasticity of the walls, energy dissipation through the
glottis etc., and are correlated to the specific vocal tract configu-
rations that produce phonemes [22]. In general, higher formants
have greater bandwidths.

2.2.3. Formant-Q

The Q-factor of a filter is defined as the ratio of the peak fre-
quency of the filter to its bandwidth. In the source-filter repre-
sentation of the vocal tract [23], the formants are considered to
be the peak filter frequencies, and the formant-Q is defined as
the ratio of a formant frequency to its bandwidth. Formant-Q’s
are also thought to be dependent on the speaker characteristics
[16], since they reflect the frequency dependent characteristics
of the speaker’s vocal tract.

2.2.4. Formant dispersion

Formant dispersion is defined as the average spacing between
the formants. It is thought to be indicative of the vocal tract
length of the speaker [24]. The conventional definition of for-
mant dispersion is the arithmetic average of the spacing be-
tween phonemes. However, this merely captures the spacing
between the highest and lowest formant. In this paper we use
a modified version of Formant dispersion, as suggested in [16]
D = n−1

√∏
i Fi − Fi−1, which is the geometric mean of the

formant spacings.

2.3. Extracting accurate feature measurements

The extraction of accurate measurements from within the
boundaries of a phoneme can be very difficult in continuous
speech, where the boundaries of phonemes are not clear even
to humans. In additions, the measurements may not be con-
sistent due to co-articulation effects. According to the widely
accepted locus theory of co-articulation, each distinct phoneme
has a locus, which is an ideal configuration of the vocal tract
necessary for its correct enunciation by the speaker. In con-
tinuous speech, as one phoneme leads into another, the vocal
tract changes shape continuously, moving from the locus of one
phoneme to another, often not achieving the target loci of suc-
cessive phonemes at all. A consequence of this continuous vari-
ation is that formant patterns at the extremities of any phoneme
vary by its adjacent phonemic context, and the degree of vari-
ability can be high. This is illustrated in Fig. 1(b). These



context-related variations of formant patterns can confuse anal-
yses, and mask the relations between formant features and the
speaker’s physical parameters. In order to minimize this confu-
sion, we therefore take all formant related measurements from
the central segments of each phoneme, since these are relatively
less affected by context, and are most representative of the locus
of the given phoneme. These segments are automatically gener-
ated by a state-of-art automatic speech recognition (ASR) sys-
tem trained specifically for generating accurate word, phoneme
and state-level segmentations. Here the term state refers to the
states of a Hidden Markov Models (HMMs) used in the ASR
system. In our work, we train 3-state Bakis Topology HMMs,
and use the segmentations corresponding to the central state
only to measure our features. Our feature (formant) measure-
ments are derived from LPC spectral analysis of the speech sig-
nal using Burg’s method [25].

Figure 2: Relationship of formant position measurements to
physical parameters.

2.4. Linear vs. Non-parametric models for analysis

We do not expect the children’s physical characteristics to be
linearly related to acoustic features. Hence linear regression
models, and the direct correlations and R2 values of features,
that capture linear relationships between predictor and depen-
dent variables, may be unsuitable for our purpose. We there-
fore use an alternate strategy to quantify these relationships.
For each physical characteristic, we train a non-parametric re-
gression model by phoneme. We quantify the relationship be-
tween the acoustic features and the physical parameter through
the correlation between the predictions made by the model and
true value of the parameter. For our experiments we use Ran-
dom Forest (RF) regression [26], which has been shown to be
effective for such studies [27].

2.5. Phoneme selection and statistical significance

The statistical significance of the computed correlations be-
tween predicted and actual values is determined using a t-test
[28]. Our data occur in groups. When all instances of a
phoneme individually predict the same speaker parameter, the
predictions cluster together more closely than those for other
speakers. In this respect, the data do not exactly correspond to
the assumptions made by the t-test, and the P values reported
by the t-test may be optimistic. To compensate for this, we use a
conservative P value threshold of 0.001 to report results. Thus,
all reported correlations, even if low, have high confidence.

3. Experimental results
Our experimental data comprise recordings from 26 children
from the 2015 collection of Copycat. The data were hand-
transcribed, with all speech and non-speech events, including

breaths, coughs etc. marked. The CMU Sphinx ASR system
[29], trained on more than 120 hours of children’s speech, was
used to extract the phonemes. To maximize accuracy, the sys-
tem was acoustically adapted to each child’s speech separately.
The resulting phoneme segmentations were manually checked
and found to be extremely accurate.

Each experiment evaluated one of the physical parameters:
age, height, weight or gender. In each experiment, we trained
and tested a 100-tree RF-based parameter predictor using the
formant features derived from all examples of a single phoneme.
Following this, an 8-fold cross-validation experiment was per-
formed. There was no overlap of speakers between the training
and test partitions in each fold. All parameters were evaluated
against all phonemes in this manner. The phoneme set com-
prised 47 phonemes including silence, of which 24 were conso-
nants and 7 were filler sounds such as laughter, breath etc.

3.0.1. The effect of physical parameters on formant positions

The focal point of our strategy is to identify the effect of physi-
cal parameters on formant measurements under different articu-
lator configurations. As a baseline, we make our predictions us-
ing all formants F1-F5. To isolate the effect of individual for-
mants, we compare this with the predictions obtained by leaving
one formant out. The difference between the two outcomes rep-
resents the contribution of the left-out formant. Fig. 2 shows
the results from these cases. We do not show results of isolating
F4 and F5 since, for children’s speech, these are frequently too
high to be measured accurately or just absent.

The following phonemes did not show any correlations with
any of the physical parameters: AA AY B CH D F G HH JH M
NG P S SH T TH W Z ZH. Note that since Copycat is a phoneti-
cally rich database, all phonemes have more than 2000 instances
in it, some have over 17000 instances. Fig. 2 shows the correla-
tions for the remaining phones. The patterns observed validate
several observations in the literature. Some examples are:

1. Among vowel sounds, the ability to predict age reduces or
disappears when formants F1-F3 are not considered. This is
because when learning to disambiguate sounds with progres-
sion of age, the child’s emphasis is expected to be on F1-F3,
which are well known to play pivotal roles in disambiguating
sounds. When we ignore these specific formants, correlations
disappear. Similar effects are also seen in a few other sounds
that may have similar undiscovered trends.

2. The dimensions of the nasal cavity do not change during ar-
ticulation, only the opening to its passageway is affected.
Opening of the passagway results in anti-resonances which
can cancel out some of the formants. We see that nasal sounds
other than N are absent from Fig. 2. Interestingly, we found
that in the case of nasals, F1-F4 are jointly needed to even
find a correlation with age.

3. It is known that formants are often not clearly discernible in
fricative sounds such as CH, JH, HH etc. due to the turbulent
nature of these sounds. They fail to appear as significant in
our analysis for relations with physical parameters as well.

4. No phoneme predicts gender, confirming several studies that
there is no significant difference between the voices of male
and female pre-pubertal children.

5. Formants correlate with height as expected. Taller children
have longer vocal tracts, and hence lower formants [30].

6. Plosive sounds do not show up in our plots. This is explained
by the fact that their central regions are usually in the low-
energy transitions between the stop and release phases that



define the complete plosive, where the formant peaks are
weak or nonexistent.

Several other such observations may be derived from the charts
above. However, perhaps the most important observation is that
individual instances of many of these phonemes, which are of-
ten just a fraction of a second long, are able to predict physical
parameters of the speakers.

3.0.2. Relations with formant bandwidths and formant-Q

Fig. 3(a) and (b) summarizes the results obtained with the for-
mant bandwidths and formant-Q respectively. These were not
found to be correlated to weight and gender. In both cases, we
find that these measurements are predictive of age and height
for only a small selection of voiced phonemes, which have high-
energy spectral peaks. The physiological interpretation of these
measurements is unclear.

Figure 3: Relation of formant bandwidths, -Q and dispersion
(D) to physical parameters (a) Formant bandwidths – when we
remove B2 and B3, all correlations vanish (graphs not shown).
(b) Formant-Q – correlations vanish again when we remove Q2
and Q3. (c) Formant Bandwidths B1-B5 and dispersion.

3.0.3. The effect of physical parameters on formant dispersion

In our study we evaluated the relation of formant dispersion
to children’s body parameters by adding it as an extra feature
along with bandwidths B1-B5. The difference between the per-
formance obtained with B1-B5 alone and B1-B5+dispersion in-
dicates the contribution of dispersion to the prediction of the pa-
rameters. This difference can be noted by comparing Fig. 3(c)
with Fig. 3(a). As in the case of bandwidths and -Q, formant
dispersions are most informative in vowel sounds. For these
sounds we note that dispersion carries significant information
about physical parameters of children as well. This brings us a
long way from some earlier studies, e.g. [24].

3.0.4. Aggregate and utterance-level predictions

Figure 4: Correlations within aggregates of articulatory-
phonetic units across speakers.

The previous results reported statistical correlations be-
tween true and predicted parameter values, when predictions
were made with individual phonetic segments. As such, they
allow us to evaluate the information encoded in each phoneme.
However, different phonemes occur with different frequencies.
Also, the prediction errors made by different instances of a
phoneme may exhibit different degrees of correlation among

themselves. Thus, a better picture of the information carried
by a phoneme is obtained by considering the statistical aggre-
gate across collections of data. Fig. 4 shows the correlation
between predicted and true parameter values, when a single pre-
diction was obtained for each child (for each phoneme) by av-
eraging the predictions made by the individual instances of the
phonemes. All features F1-F5, B1-B5, Q1-Q5 and D were used.
Only correlations greater than 0.35 are shown. We note that pre-
dictions are much more accurate, and correlations greater than
0.6 and as high as 0.7 are obtained for several phonemes, both
for height and age. Weight is, in general less easy to predict, but
is nevertheless predictable.

One of our objectives in this paper was to identify the spe-
cific articulatory phonetic units that would enable accurate pre-
diction of children’s physical parameters. Table 1 shows the
mean absolute error in predicting age, height and weight using
three classifiers. The first was obtained using a single i-vector
feature derived from all the recordings for a child [9], and pre-
dicting the feature using the i-vector. Predictions were made
using SVM regression. This procedure produces state-of-art re-
sults for anthropometric prediction in adults [10]. The second
and third predictors were based on formant measurements. Our
second predictor averaged predictions obtained from individual
phonemes in the recordings for any child. The third predic-
tor used only phonemes which resulted in a correlation greater
than 0.4 in fig. 4. We note that segmenting the speech signal
into phonemes and averaging the individual predictions from
them results in significant improvement in prediction over sim-
ply using all the speech. But utilizing only the most informative
phonemes results in the best performance, as expected.

Age (yrs) Height (cm) Weight (kg)
Global 1.24 3.57 7.5

All phonemes 1.10 3.44 7.35
Best phonemes 0.95 3.32 7.24

Table 1: Mean average error in the prediction of age, height and
weight using different ensemble aggregations.

4. Conclusions
We note that as originally hypothesized, focusing on the spe-
cific articulatory-phonetic units that are most influenced by the
parameters results in the best performance. Weight is, in gen-
eral, much harder to predict than age or height. However, we
note that these parameters are not independent. It is known
that in children, age is correlated with height and weight (and
must influence their expression in voice as well). The correla-
tion between age and height in this set was 0.86, between age
and weight was 0.67. So any predictor that predicts age well is
likely to also predict height well, and vice-versa. Of greater im-
portance is the fact that the results support our original hypoth-
esis – that it is important to consider the individual aspects of
the speech production mechanism and the speech signal itself,
in predicting physical parameters, and that ensemble character-
izations that ignore these distinctions can be less effective. In
children, age also correlates with macro characteristics within
sentences or sentence-level segments of children’s speech, such
as prosody, cadence, loudness, rate etc. Statistical features such
as i-vectors may be useful to capture these effects. Finally, we
note that in this paper, we have used formant measurements for
illustrative purposes. Several other types of features that cap-
ture different signal characteristics at subphonetic levels can be
readily used in the same manner.
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