
Computational Narrative

Mubbasir Kapadia∗

Rutgers University
Steven Poulakos†

Disney Research Zurich
Markus Gross‡

Disney Research Zurich
Robert W. Sumner§

Disney Research Zurich

Abstract

Despite the maturity in solutions for animating expressive virtual
characters, innovations realizing the creative intent of story writers
have yet to make the same strides. This problem is further exac-
erbated for interactive narrative content, such as games. The key
challenge is to provide an accessible, yet expressive interface for
story authoring that enables the rapid prototyping, iteration, and
deployment of narrative concepts, while facilitate free-form inter-
action.

In this short course, we present the potential of computational in-
telligence to empower authors and content creators in creating their
own interactive animated stories. There are 4 key contributions to-
wards realizing this goal. First, we introduce a novel event-centric
representation of narrative atoms which serve as the building blocks
of any story. Second, we present a graphical platform for story ar-
chitects to craft their own unique story worlds. Third, we present
CANVAS, a computer-assisted visual authoring tool for synthesiz-
ing multi-character animations from sparsely- specified narrative
events. In a process akin to storyboarding, authors lay out the key
plot points in a story, and our system automatically fills in the miss-
ing details to synthesize a 3D animation that meets author con-
straints. Fourth, we present extensions to our logical formalisms
to enable the transformation of a passive narrative into an interac-
tive story, and how computational intelligence may be leveraged to
identify and automatically resolve conflicts in the story. We analyse
the authoring complexity of different story formalisms to present
the benefits and tradeoffs of each. This course targets both Basic
and Intermediate level attendees, with a preliminary background
knowledge of Computer Animation and Artificial Intelligence rec-
ommended.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Digital Storytelling, Computational Narrative

1 Course Overview

Interactive narratives strive to offer immersive digital experiences
in which users create or influence a dramatic storyline through their
actions in interactive virtual worlds. The far-reaching goal is to
immerse users in a virtual world where they become an integral
part of an unfolding narrative and can significantly alter the story’s
outcome through their actions.

∗mubbasir.kapadia@rutgers.edu
†steven.poulakos@disneyresearch.com
‡gross@disneyresearch.com
§bob.sumner@disneyresearch.com

Traditional linear narratives provide little user agency to influence
the outcome of the story. Computer games often use linear plots
interspersed with isolated interactive segments, with all users ex-
periencing the same plot during successive sessions. Branching
narratives [Gordon et al. 2004], where the narrative outcome de-
pends on the user’s decisions provide a discrete set of choices that
influence the story. The authoring complexity of these approaches
grows exponentially with the number of story arcs, the number of
interaction possibilities, and the granularity of interaction. Story
arcs are tightly coupled and new interactions require monolithic
changes where the authoring complexity is kept tractable only by
severely limiting user agency to discrete choices at key points in the
story. Hence, traditional interactive narrative applications such as
games either provide strong narrative experiences with limited user
agency or provide compelling interactive experiences with simple
narrative structure.

Creating an authoring platform that enables content creators to au-
thor free-form interactive narratives with multiple story arcs where
the players can influence the narrative outcome, while using au-
tomation to facilitate the authoring process and not hinder it, is the
main outcome of this course. There are two main issues which we
will address: (1) An appropriate language for authoring interactive
narratives that scales with story complexity, and freedom of inter-
action. (2) Integrated automation solutions to facilitate the story
authoring process without sacrificing author control.

In this short course, we present the potential of computational in-
telligence to empower authors and content creators in creating their
own interactive animated stories. There are 4 key contributions to-
wards realizing this goal. First, we introduce a novel event-centric
representation of narrative atoms which serve as the building blocks
of any story. Second, we present a graphical platform for story ar-
chitects to craft their own unique story worlds. Third, we present
CANVAS, a computer-assisted visual authoring tool for synthesiz-
ing multi-character animations from sparsely- specified narrative
events. In a process akin to storyboarding, authors lay out the key
plot points in a story, and our system automatically fills in the miss-
ing details to synthesize a 3D animation that meets author con-
straints. Fourth, we present extensions to our logical formalisms
to enable the transformation of a passive narrative into an interac-
tive story, and how computational intelligence may be leveraged to
identify and automatically resolve conflicts in the story. We analyse
the authoring complexity of different story formalisms to present
the benefits and tradeoffs of each. This course targets both Basic
and Intermediate level attendees, with a preliminary background
knowledge of Computer Animation and Artificial Intelligence rec-
ommended.

1.1 Topics Overview.

The course material is designed for both basic and intermediate
level attendees, and is organized in four parts.

• Part I: Knowledge Representation and Reasoning of An-
imated Stories. Section 3 introduces the logical formalisms
to represent the building blocks of a story world, referred to
as domain knowledge. In particular, we introduce an event-
centric representation for representing the atoms of a narrative
in a modular, and extensible way. The relevant publications
are [Shoulson et al. 2011; Shoulson et al. 2013].

• Part II: Graphical Authoring of Story Worlds. Section 4
describes a graphical platform to enable end users (not just
story writers and architects) to author their own story worlds.
The relevant publications are [Poulakos et al. 2015; Poulakos
et al. 2016].

• Part III: Computer-Assisted Narrative Animation Synthe-
sis. Section 5 introduces a visual storyboard metaphor for au-
thoring animated stories, which is accessible to novice users
and provides the right level of abstraction for creating story-
driven animated content. We additionally introduce automa-
tion techniques to further help users by automatically detect-
ing and resolving inconsistencies in their stories. The relevant
publications are [Kapadia et al. 2016b; Kapadia et al. 2016c].

• Part IV:Computer-Assisted Authoring of Interactive Nar-
ratives. Section 6 introduces extensions to the logical for-
malisms to efficiently represent interactive animated stories.
In particular, we focus on freeform user interaction where
the player has the ability to interact with characters at any
point in the narrative, and is not limited to a discrete set of
story choices. We introduce algorithms that automatically de-
tect potential user interactions which would conflict with the
story specification and provide suggestions for automatically
resolving conflicts through narrative mediation and interven-
tion techniques. The relevant publication is [Kapadia et al.
2015b].

• Part V: Authoring Complexity of Interactive Narratives.
Section 7 analyses the authoring complexity of different story
representations, presenting the benefits and trade-offs of ex-
isting representations, with comparisons to the proposed for-
malisms. The relevant publication is [Kapadia et al. 2015c].

1.2 Course outline.

The 1.5 hour course will be divided into the following parts:

• Introduction (5 minutes, Mubbasir Kapadia)

• Building Blocks of Animated Stories. (15 minutes, Steven
Poulakos)

• Graphical Authoring of Story Worlds (15 minutes, Steven
Poulakos)

• Computer-Assisted Narrative Animation Synthesis (15 min-
utes, Mubbasir Kapadia)

• Computer-Assisted Authoring of Interactive Narratives (15
minutes, Mubbasir Kapadia)

• Authoring Complexity of Interactive Narratives (15 minutes,
Mubbasir Kapadia)

• Q & A (5 minutes, Mubbasir Kapadia and Steven Poulakos)

1.3 Presenters

Mubbasir Kapadia is an Assistant Professor in the Computer Sci-
ence Department at Rutgers University. Previously, he was an As-
sociate Research Scientist at Disney Research Zurich. He was a
postdoctoral researcher and Assistant Director at the Center for Hu-
man Modeling and Simulation at University of Pennsylvania. He
received his PhD in Computer Science at University of California,
Los Angeles. Mubbasir’s research seeks to develop computational
tools to assist end users to create and experience compelling, inter-
active, digital stories. To this end, we have revisited standard rep-
resentations of interactive narratives and proposed new formalisms
that scale independent of story complexity and user interaction. Our

computational tools help mitigate the complexity of creating digital
stories without sacrificing any authorial precision.

Steven Poulakos is an Associate Research Scientist at Disney Re-
search Zurich. He received his PhD in Computer Science from ETH
Zurich under the supervision of Prof. Markus Gross in 2014. His
research interests include interactive digital storytelling and user
perception.

1.4 Supplementary Material.

We have included as part of the supplementary material: (1) rele-
vant publications, (2) sample presentation slides, (3) supplementary
Videos, and (4) links to open-source software solutions. At the time
of course presentation, a webpage with all this material will be re-
leased which will collate all this material and make it accessible to
the audience.

2 Prior Work

The maturity of research in the simulation and animation of vir-
tual characters has expanded the possibilities for authoring complex
multi-character animations [Kovar et al. 2002; Lee 2010]. These
methods represent tradeoffs between user-driven specification and
automatic behavior generation.

The work of Kwon et al. [2008], and Kim et al. [2009; 2014]
synthesizes synchronized multi-character motions and crowd an-
imations by editing and stitching motion capture clips. “Motion
patches” [Lee et al. 2006] annotate motion semantics in envi-
ronments and can be concatenated [Kim et al. 2012] or precom-
puted [Shum et al. 2008] to synthesize complex multi-character in-
teractions. Recent work [Won et al. 2014] provides sophisticated
tools for generating and ranking complex interactions (e.g., fight-
ing motions) between a small number of characters from a text-
based specification of the scene. The focus of these approaches is
to produce rich, complex, and populated scenes [Jordao et al. 2014]
where the consistency of the interactions between characters toward
an overarching narrative is less relevant.

In contrast, behavior-centric approaches use logical con-
structs [Vilhjálmsson et al. 2007; Stocker et al. 2010] and complex
models [Yu and Terzopoulos 2007] to represent knowledge
and action selection in agents. Parameterized Behavior Trees
(PBT’s) [Shoulson et al. 2011] are hierarchical, modular descrip-
tions of coordinated activities between multiple actors. These
constructs offer suitable abstractions to serve as the building blocks
for defining story worlds and can be harnessed by future interfaces
for story authoring.

Scripting. Scripted approaches [Loyall 1997; Mateas 2002] de-
scribe behaviors as pre-defined sequences of actions. However,
small changes in scripting systems often require extensive modifi-
cations of monolithic specifications. Systems such as Improv [Per-
lin and Goldberg 1996], LIVE [Menou 2001], and “Massive” use
rules to define an actor’s response to external stimuli. These sys-
tems require domain expertise, making them inaccessible to end-
users, and are not designed for authoring complicated multi-actor
interactions over the course of a lengthy narrative.

Visual Authoring. Domain-specific visual languages have been
successfully used in many applications [Whitley and Blackwell
1997] and storyboards are a natural metaphor for specifying narra-
tives [Kurlander et al. 1996]. Game-design systems [Kelleher et al.
2007; Rosini 2014] facilitate the authoring of game logic by pro-
viding visual analogies to programming constructs. Skorupski and
Mateas [2010] propose a storyboarding tool for novice users to au-
thor interactive comics. LongBoard [Jhala et al. 2008] provides a

http://www.massivesofware.com

hybrid sketch and scripting interface for rendering an animated 3D
scene. Physics Storyboards [Ha et al. 2013] focus on key events
to accelerate the process of tuning interactive, procedural anima-
tions. Visual authoring tools offer accessible interfaces that don’t
require domain expertise, but the challenge is to provide an accessi-
ble metaphor that is intuitive, yet expressive. Hence, current visual
authoring systems are limited to simple applications such as 2D
comics.

Automation. Total-order planners [Fikes and Nilsson 1971;
Hart et al. 1972] are promising for automated behavior genera-
tion [Funge et al. 1999; Kapadia et al. 2011; Shoulson et al. 2013;
Riedl and Bulitko 2013]. These approaches require the specifica-
tion of domain knowledge, and sacrifice some authoring precision,
but they permit the automatic generation of a strict sequence of ac-
tions to satisfy a desired narrative outcome. Planning in the action
space of all participating actors scales combinatorially, and these
approaches are restricted to simplified problem domains [Jhala et al.
2008] with small numbers of agents. Partial-order planners [Sacer-
doti 1975] relax the strict ordering constraints during planning to
potentially handle more complex domains, and have been applied
to accommodate player agency in interactive narratives [Kapadia
et al. 2015a; Cavazza et al. 2002]. The work in [Porteous et al.
2011; Hoffmann et al. 2004] introduces the concept of “landmarks”
to allow authors to specify additional narrative constraints for auto-
mated narrative synthesis.

Course Material. Existing authoring systems [Kapadia et al. 2011;
Riedl and Bulitko 2013] offer automation at the cost of creative con-
trol, and allow users to specify only the narrative outcome, with lit-
tle or no control over the intermediate plot points. Our motivations
are different; to use automation to facilitate, not replace, human in-
tervention in the story authoring process. To this end, we describe
the following main learning outcomes of this proposal:

1. Knowledge Representation and Reasoning for Animated
Stories, Symbolic Representations of Smart Objects,
Affordances, and Events using Parameterized Behavior
Trees [Shoulson et al. 2011; Shoulson et al. 2014].

2. Graphical Abstractions for Story World Specifica-
tion [Poulakos et al. 2016].

3. Graphical Abstractions of Story Arcs as Visual Story-
boards [Kapadia et al. 2016c].

4. Algorithms for Story Inconsistency Detection and Resolu-
tion [Kapadia et al. 2016b].

5. Interactive Parameterized Behavior Trees for Representating
Interactive Narratives [Kapadia et al. 2015a].

6. Algorithms for Detecting and Resolving Conflicting User Ac-
tions [Kapadia et al. 2015a].

7. Cyclomatic Complexity Measures for Analysing Story Com-
plexity [Kapadia et al. 2015c].

3 Knowledge Representation and Reasoning
of Animated Stories

An underlying representation of the story world, referred to as do-
main knowledge, is a prerequisite to computer-assisted authoring.
This includes annotated semantics that characterize the different
ways in which objects and characters interact (affordances), and
how these affordances are utilized to create interactions of narra-
tive significance (events), the atoms of a story. CANVAS is no dif-
ferent from other intelligent systems [Riedl and Bulitko 2013] in
this regard. However, the cost of specifying domain knowledge is

Par�al Story
Specifica�on

Story Space
Explora�on

3D Virtual World

Event Defini�on Event Library

DOMAIN SPECIFICATION VISUAL AUTHORING

AUTOMATIC STORY

COMPLETION INSTANT PREVISUALIZATION

Smart Objects

Figure 1: CANVAS Framework Overview.

greatly mitigated by the ability to author a variety of compelling
narratives in a fashion that is accessible to story writers, artists, and
casual users, enabling authors to focus only on key plot points while
relying on automation to facilitate the creative process. Addition-
ally, domain knowledge can be generalized and transferred across
story worlds. We describe our representation of domain knowledge
which balances ease of specification and efficiency of automation,
by mitigating the combinatorial complexity of authoring individual
characters in complex multi-character interactions. The one-time
cost of story world building, is minimized using graphical inter-
faces [Poulakos et al. 2015].

Smart Objects and Actors. The virtual worldW consists of smart
objects [Kallmann and Thalmann 1999] with embedded informa-
tion about how an actor can use the object. We define a smart ob-
ject w ∈ W as w = 〈F, s〉 with a set of advertised affordances F
and a state s. Smart actors inherit all the properties of smart objects
and can invoke affordances on other smart objects or actors in the
world.

Affordances. An affordance f(wo, wu) ∈ F is an advertised ca-
pability offered by a smart object that manipulates the states of the
owner of an affordance wo and another smart object user (usually a
smart actor) wu. Reflexive affordances f(wo, wo) can be invoked
by the smart object owner. For example, a chair can advertise a
“Sit” affordance that controls an actor to sit on the chair.

State. The state s = 〈θ,R〉 of a smart object w comprises a
set of attribute mappings θ, and a collection of pairwise relation-
ships R with all other smart objects in W . An attribute θ(i, j) is
a bit that denotes the value of the jth attribute for wi. Attributes
are used to identify immutable properties of a smart object such
as its role (e.g., a chair or an actor) which never changes, or dy-
namic properties (e.g., IsLocked, IsIncapacitated) which
may change during the story. A specific relationship Ra(·, ·) is
a sparse matrix of |W| × |W|, where Ra(i, j) is a bit that de-
notes the current value of the ath relationship between wi and
wj . For example, an IsFriendOf relationship indicates that wi
is a friend of wj . Note that relationships may not be symmetric,
∃ (i, j) ∈ |W| × |W| : Ra(i, j) 6= Ra(j, i).

Events. Events are pre-defined context-specific interactions be-
tween any number of participating smart objects whose outcome
is dictated by the current state of its participants. Events serve as
the building blocks for authoring complex narratives. An event
is formally defined as e = 〈t, r,Φ,Ω〉 where t is a Parameter-
ized Behavior Tree (PBT) [Shoulson et al. 2011] definition, and
is an effective model for representing coordinated behaviors be-
tween multiple actors. t takes any number of participating smart

objects as parameters where r = {ri} define the desired roles
for each participant. ri is a logical formula specifying the de-
sired value of the immutable attributes θ(·, j) for wj to be con-
sidered as a valid candidate for that particular role in the event.
A precondition Φ : sw ← {TRUE,FALSE} is a logical expres-
sion on the compound state sw of a particular set of smart objects
w : {w1, w2, . . . w|r|} that checks the validity of the states of each
smart object. Φ is represented as a conjunction of clauses φ ∈ Φ
where each clause φ is a literal that specifies the desired attributes of
smart objects, relationships, as well as rules between pairs of partic-
ipants. A precondition is fulfilled by w ⊆ W if Φe(w) = TRUE.
The event postcondition Ω : s → s ′ transforms the current state of
all event participants s to s ′ by executing the effects of the event.
When an event fails, s ′ = s . An event instance I = 〈e,w〉 is an
event e populated with an ordered list of smart object participants
w. Φe(w) = TRUE. The event postcondition Ω : s → s ′ trans-
forms the current state of all event participants s to s ′ by executing
the effects of the event. When an event fails, s ′ = s . An event
instance I = 〈e,w〉 is an event e populated with an ordered list of
smart object participants w.

Ambient Activity. Individual smart objects can be grouped to-
gether to create smart groups: wg = 〈F, s,w, Eg〉which contains a
mutable set of smart objects w ⊂ W (wg 6∈ w). To generate ambi-
ent activity that does not conflict with the overall narrative, a smart
group has an ambient event scheduler that schedules events from a
lexicon Eg for the members of w while satisfying a user-specified
event distribution. We enforce that Ωe(s) = s , ∀ e ∈ Eg , im-
plying that ambient activity will not change the narrative state of
its participating actors. This allows for the seamless transition of
smart actors from members of an anonymous crowd to protagonists
in a story.

4 Graphical Authoring of Story Worlds

Our Story World Builder (SWB) is designed to build up com-
ponents of a full story world with required semantics to enable
computer-assisted narrative generation. The graphical platform is
built within the Unity3D game engine. Our demonstration sys-
tem conforms to the event-centric representations of Shoulson et
al. [2013] and integrates with the CANVAS story authoring system
of Kapadia et al. [2016a]. CANVAS provides a storyboard-based
metaphor for visual story authoring of event and event participants,
and it utilizes partial-order planning to enable computer-assisted
generation of narratives. The underlying representation of the story
world is general and can be easily used within other computer as-
sisted narrative generation systems, such as PDDL.

Story world building begins with the creation of a new story world
project and the specification of a scene. The scene specification can
involve inclusion of static scene elements, environment lighting and
navigation paths in the environment. Building a story world contin-
ues with three system components, which are described below: (1)
Smart Object Editor: defining a set of smart objects and characters,
and instantiating them in the scene. (2) State Editor: defining states,
roles and relationships. (3) Affordance and Event Editors: defin-
ing capabilities for smart objects and the events which use them.
Figure 2 illustrates bi-directional relationship between these com-
ponents and illustrates an example story that was generated within
the Haunted Castle scenario.

Smart Object Editor. Smart objects represent all of the charac-
ters and props that influence the story world. In the context of our
overall formalism, smart objects have state and offer capabilities to
interact with other smart objects and influence the state of the story
world. Smart object characters are identified as “smart characters”.
We differentiate smart characters because they require additional

components to, for example, support inverse kinematics to do com-
plex physical actions, such as pressing a button and grasping ob-
jects. All humanoid smart characters can have the same base set of
capabilities.

Figure 3 (a) shows the interface for creating a smart character called
“Ghost”, which is embodied by a ghost model. Once the smart
character is created, the user may then edit properties of the smart
object, accessed via the Edit tab. The Instantiate tab, visualized in
Figure 3 (b), is then used to create one or more instances of the
Ghost smart object within the scene. Each instance has a unique
name, for example “MyGhost”. Instantiated smart objects are listed
at the bottom of the tab. Additional components are provided to
specify other properties, including a representative icon for use in
the authoring system.

State, Role and Relation Editor. The State Editor enables the
creation of state attributes, roles and relationships available for use
with smart objects in the world. States include high level descrip-
tions of objects. For example, the state IsInhabiting is true
when a ghost is inhabiting another object. Roles may be created to
specify that all ghost smart objects have the role IsGhost. Rela-
tionships existing in the world may also be defined. For example,
ghosts may have an IsAlliedWith or IsInhabitedBy rela-
tion. Each smart object provides a component for editing its states,
roles and relations.

Affordance and Event Editors. Following the event-centric rep-
resentation [Shoulson et al. 2013], events are defined as Parameter-
ized Behavior Trees (PBT) [Shoulson et al. 2011], which provide a
graphical, hierarchical representation for specifying complex multi-
actor interactions in a modular, extensible fashion. Event creation
involves specification of Affordance PBT, Event PBT, and event-
based planning.

Affordance PBT. Affordances specify the capabilities of smart ob-
jects. An affordance owner offers a capability to the affordance
user. Figure 4 (a) demonstrates an example “InhabitAffordance”,
which is owned by a smart object and used by a smart character.
Figure 4 (b) represents an example behavior tree to achieve the af-
fordance. A sequence control node is used to specify that a smart
character user (a ghost) will jump into a smart object (the painting)
and become invisible. The material property of the smart object will
change to reflect that it is now inhabited. Affordances can be much
more complex. An advantage of specifying affordances is that they
may be reused in many events.

Event PBT. Events utilize the affordances and conditional logic to
compose more complex forms of interaction. Figure 4 (c) and (d)
present the creation of the InhabitEvent. This simple example uses
a sequential control node to specify that a smart character (a ghost)
will first approach a smart object (the painting) before inhabiting it.
Events may have multiple smart object and character participants,
however they must be consistently specified throughout the event
behavior tree nodes. We use names of characters from an exam-
ple scenarios to maintain consistency. Additional components are
provided to specify a representative icon for use in the authoring
system. Both events and affordance PBTs may be cloned and mod-
ified to support reuse.

Event-based planning. Additional semantics are specified at the
event-level to enable reasoning about the logical connectivity of
events. Preconditions and postconditions are defined as conjunc-
tive normal form (CNF) expressions on the state and relations of
the PBT participants. The event behavior tree in Figure 4 (d) in-
cludes a Set Node, which specifies a postcondition associated with
the event. In our example, the IsInhabiting state of the ghost
is set to true. In the context of our example, we may required
that the smart object has role IsInhabitable or we may set an

Figure 2: Overview for building a story world and authoring stories. A scientist enters the haunted castle, investigates a painting and is then
spooked by a ghost.

(a) (b)

Figure 3: Smart Objects Editor. (a) Create and (b) Instantiate
smart objects.

IsInhabitedBy relation between the smart object and character.
The author may specify pre- and post-conditions within both Affor-
dance and Event PBTs. The SWB will determine which conditions
to use to support event-based planning and is compatible with the
requirements of our example story authoring system [Kapadia et al.
2016a].

Coupled Story World Building and Story Authoring. Traditional
systems decouple the act of building story worlds and defining nar-
ratives, which are often executed by different users (story world
builders and story writers). We present a system that takes steps to-
wards making story world building accessible to non-experts. How-
ever, in a traditional uni-directional workflow, a story world, once
finalized, cannot be modified while authoring stories. This intro-
duces certain limitations where users need to forecast all the foun-
dational blocks (smart objects and events) that need to exist in a
story world.

To mitigate this, we introduce a bi-directional workflow that cou-
ples story world building and story authoring. Our system natu-
rally extends to facilitate seamlessly transitioning between these
two acts. This workflow affords several benefits allowing tradi-
tional story authors to easily edit and modify existing story world
definitions to accommodate new features, and introduce new smart
objects or events, that may be necessary to realize their narrative.

Figure 4: Affordance and Event Editors. (a) The Inhabit affor-
dance is created, which is owned by a smart object and used by a
smart character to inhabit the smart object. (b) The affordance be-
havior tree represents the series of actions. (c) An Inhabit event is
created. (d) An event behavior tree specifies a sequence of affor-
dances and condition nodes.

5 Computer-Assisted Narrative Animation
Synthesis

Despite the maturity in solutions for animating expressive virtual
characters, innovations realizing the creative intent of story writers
have yet to make the same strides. The key challenge is to provide
an accessible, yet expressive interface for story authoring that en-
ables the rapid prototyping, iteration, and deployment of narrative
concepts. We present CANVAS, a computer-assisted visual author-
ing tool for synthesizing multi-character animations from sparsely-
specified narrative events. In a process akin to storyboarding, au-
thors lay out the key plot points in a story, and our system automat-
ically fills in the missing details to synthesize a 3D animation that
meets author constraints. CANVAS can be used by artists and direc-
tors to pre-visualize storyboards in an iterative fashion, and casual
users may provide arbitrarily sparse specifications and harness au-
tomation to rapidly generate diverse narratives. CANVAS provides
an accessible interface for rapidly authoring and pre-visualizing
complex narratives. Automation reduces the authoring effort fur-
ther without undermining creative control or interfering with the
storytelling process.

Figure 5: CANVAS Overview. (a) Visual Story Authoring: Authors specify key plot points in the narrative as logical interactions between
participating actors, which are represented as visual storyboards. (b) Automatic Story Completion: CANVAS automatically identifies and
resolves incomplete stories by filling in missing participants and introducing new story elements to generate a sound, consistent, and complete
narrative, while preserving the original intent of the author. (c) Instant Pre-visualization: A 3D animation of the narrative is instantaneously
generated for rapid iteration.

5.1 Graphical Authoring of Story Arcs

To make authoring narratives accessible to everyone, we abstract
away the domain knowledge for end users, who experience the au-
thoring of complex narratives as an ordering of key event instances
between participating smart objects using a graphical storyboarding
interface.

I(2,1)

I(1,1) I(1, 2)

w1 w2 w3 wn

I(q,1) I(q,2)

B1

B2

Bq

…

Eφ

Eσ

Eπ

I(q,m)
…

Figure 6: Representation of a story arc as a story sequence dia-
gram.

Story Beats and Story Arcs. A story beat B = {I1, . . . , In}
is a collection of event instances occurring simultaneously at a
particular point in the story. The preconditions of a story beat
B = {I1 . . . In} are a conjunction of the preconditions of all its
event instances: ΦB = Φe1 ∧ Φe2,∧ . . . ∧ Φen . Since all event
instances within a beat execute in parallel, the same smart object is
not allowed to participate in multiple instances of the same beat. A
Story Arc c = (B0,B1, . . . ,Bm) is an ordered sequence of beats
representing a story, where events can occur both sequentially and
simultaneously throughout that story’s execution.

Story Sequence Diagrams. Story Arcs are authored as Story Se-
quence Diagrams, which are exposed to users in the form of a
graphical authoring interface. A Story Sequence Diagram is a di-
rected acyclic graph Q = 〈V,E〉. The vertices V = VS ∪ VI
consist of smart objects VS ⊆ W , and event instances VI ⊆ I.
The edges E = Eπ ∪ Eσ ∪ Eϕ indicate three relationship types.
Participation edges Eπ ⊆ VS × VI denote a “participates in” rela-
tionship between a smart object and an event instance (to populate
a role). Sequence edges Eσ ⊆ VI × VI denote a “comes after”
relationship between two event instances and is used to separate
events in different story beats. Termination edges Eϕ ⊆ VI × VI

denote a termination dependency, where an edge between (Ii, Ij)
indicates that Ij is terminated as soon as Ii finishes executing. Note
that Ii and Ij must be in the same story beat. Sequence edges can
be manually added by the author to define separate story beats, or
are automatically inserted when a smart object participating in the
instance is already involved in another event at the same time. Each
horizontal row of event instances delineates a beat, and the ordered
sequence of beats represents the resulting story arc. Fig. 6 illus-
trates a generic story arc represented as a story sequence diagram.

5.2 Graphical Authoring Interface

Starting with the default scene layout, the author introduces smart
actors and objects into the scene to populate the worldW , and the
event lexicon E . Authoring a story arc entails the following sim-
ple steps. The author drags and drops event instances I , visual-
ized as parameterized storyboard elements, into the story arc can-
vas. Participation edges between a smart object and an instance
can be added by dragging a particular smart object portrait into the
corresponding event parameter slot. Smart objects can be filtered
by roles, and events by names to ease the selection process. When
placing a smart object into an event parameter slot, CANVAS auto-
matically checks for consistency of parameter specification and in-
validates parameters which don’t satisfy the role and precondition
constraints of the event. Sequence edges denoting an ordering con-
straint are added by drawing a line between two instances, which
places the second instance on the next story beat. New beats are
created by simply dragging an event instance onto a new line in
the story canvas. There is a separate panel for authoring ambient
activity where authors select a collection of smart objects and spec-
ify a distribution of events which have no postconditions and are
guaranteed to not conflict with the main story arc.

Using this simple and intuitive interface, CANVAS users can au-
thor compelling narratives by specifying the events that take place
between the participating actors in the story. However, the user
must author a complete story by specifying all the necessary events
and its participants. In order to enable authors to focus only on
the key events between the protagonists of the story, we introduce
automation tools that complete partial story specifications. For a
partially-authored story, pressing the “Complete” button automati-
cally generates a complete story arc by filling in missing event pa-
rameters, inserting new events and story beats within the constraints
of the original story definition. Pressing “Play” instantly creates a
3D pre-visualization of the scene with the animated characters act-
ing out the story. The scene is animated and visualized using the
ADAPT animation platform [Shoulson et al. 2014] in the Unity 3D

engine. If the author is not satisfied with his creation, he or she can
easily edit the original story definition and iteratively refine it. The
instant pre-visualization and short validation and generation times
are invaluable for rapid iteration. The supplementary video demon-
strates the graphical authoring environment.

5.3 Automation

Problem Formulation. An author may specify a partial story
αp = (B0,B1, . . . ,Bm) using the CANVAS interface where event
instances in the story beats B = {I1 . . . In} may contain open pre-
conditions and unspecified parameters. The goal of automation is
to take as input a partial story specification αp and automatically
generate a complete and consistent story αc, subject to the follow-
ing constraints: (1) Author Constraints. The original intent of the
author, as specified in αp must be preserved in αc. In particular,
all event instances in αp must be present in αc and the relative or-
dering of these instances must be preserved. The event participants
that were specified in αp must persist for the corresponding events
in αc. Also, the last story beat in both αp and αc must be identi-
cal. (2) Story Completeness. The event participants for all event
instances in αc must be completely specified and satisfy the role
constraint. (3) Story Consistency. The preconditions of all event
instances must be satisfied, and none of the ordering constraints be-
tween pairs of event instances in αc may contradict each other. The
equation below formalizes the resolution of a partial arc αp into a
complete arc αc, subject to the above constraints:

Resolve : αp → αc

s.t. B
αp

|αp| = Bαc
|αc|,

∃ I ∈ αc, ∀ I ∈ αp,
(Ii ≺ Ij) ∈ αc s.t. (Ii ≺ Ij) ∈ αp ∀ (Ii, Ij) ∈ αp,
∃ wj ∈ w s.t. ri(wj) = TRUE ∀ ri ∈ re,

Φe(w) = TRUE ∀ I = 〈e,w〉 ∈ αc,
Consistent(αc) = TRUE

(1)

Formulated as a discrete search in the space of all possible event in-
stances, our problem domain has a very high branching factor that
is combinatorial in the cardinality of the event lexicon |E|, and the
number of possible parameter bindings per event instance |P|. The
problem definition does not contain an explicit goal state formula-
tion, where goals are implicitly specified as desired event precon-
ditions that must be satisfied. Also, a partial story definition may
contain many inconsistent or incomplete event instances with open
preconditions that have conflicting solutions.

One approach is to identify all incomplete event instances in a story
definition and generate solutions for each independently. However,
this approach does not ensure completeness because solving one
set of preconditions may invalidate existing solutions. Also, there
may be cases where a coordinated resolution strategy is needed for
multiple event instances across story beats, where the solution for
one event instance may invalidate the possibility of any resolution
for another instance. This problem of multiple contradicting goals
is well documented in classical artificial intelligence and is a varia-
tion of the Sussman Anomaly [Sussman 1975].

Consider a simple scenario with a guard and robber. The robber has
a weapon for coercion or incapacitation and the guard has the key to
the room with a button to open the vault. We author an incomplete
story where B1: the robber will unlock the door to the room (which
requires the key) and B2: coerce the guard into pressing the vault
button. By resolving the inconsistencies independently, we get a
solution to B1 where the robber incapacitates the guard in order to

take his key, thus allowing him to open the door. However, this pre-
vents any possible solution for B2 since the guard is incapacitated
and can no longer be coerced into pressing the button.

Partial Order Planning. An alternative approach is to search
through the space of partial plans following the Principle of Least
Commitment [Sacerdoti 1975], where event instances and order-
ing constraints are added to the plan only when strictly needed.
This class of solutions is especially efficient for problems with high
branching factor, no explicit goal formulation, multiple contradict-
ing goal constraints, and many possible solutions that differ only
in their ordering of execution. Partial-order planners avoid unnec-
essary choices early on in the search that may invalidate the solu-
tion and require expensive backtracking. In comparison, total-order
planners [Fikes and Nilsson 1971; Hart et al. 1972] make strict
commitments about the plan ordering at each step in the search, and
require expensive backtracking due to wasted computations. For
more details on a comparative analysis, please refer to Minton et
al. [1992]. Section 5.3.1 introduces relevant terminology and Sec-
tion 5.3.2 describes a provably sound, complete algorithm for au-
tomatically filling in partial story specifications using a plan-space
approach.

5.3.1 Terminology

Parameter Bindings. The set of parameter bindings P (I) for an
incomplete event instance I = 〈e,w〉 where w is a partially-filled
ordered set of n smart objects: {wi | wi ∈ W ∪ {∅}}, comprises
all possible unique permutations of smart object participants inW
that satisfy event roles and preconditions.

Ordering Constraints. An ordering constraint I1 ≺ I2 between
two event instances implies that I2 must execute some time after I1
in the story c, though not necessarily immediately after. Formally,
I1 ≺ I2 ⇒ I1 ∈ Bi, I2 ∈ Bj , ∃ Bi,Bj ∈ c s.t. i < j.
Ordering constraints are transitive in the set of event instances I:
I1 ≺ I2, I2 ≺ I3 ⇒ I1 ≺ I3 ∀ (I1, I2, I3) ∈ I. Transitive
relationships are henceforth represented as I1 ≺ I2 ≺ I3. The
notation I1 ∼ I2 denotes when two events are in the same beat and
said to execute simultaneously.

Causal Links. A causal link 〈I1, φ, I2〉 : I1
φ−→ I2 between two

event instances I1, I2 indicates that executing the postconditions of
I1 satisfies a clause φ in the precondition of I2. In other words,
φ ∈ ΩI1 ∧ φ ∈ ΦI2 .

Threats. Causal links are used to detect and resolve threats.
Threats are newly-introduced event instances which interfere with
current events in the story by invalidating their preconditions. An

event instance It threatens a causal link I1
φ−→ I2 when the fol-

lowing two criteria are met: (1) I1 ≺ It ≺ I2. (2) ¬φ ∈ ΩIt .
Threats can be resolved in two ways: (1) Demotion. Order It be-
fore the causal link by introducing an ordering constraint: It ≺ I1.
(2) Promotion. Order It after the causal link by introducing an or-
dering constraint: I2 ≺ It. All threats must be resolved in order to
generate a consistent story specification.

Partial Order Plan. A partial order plan π is a set of event in-
stances together with a partial ordering between them. Formally,
a partial order plan π = 〈I,O,L〉 where I is the set of event in-
stances in π,O is a set of ordering constraints over I, and L is a set
of causal links. π is consistent if I and O are consistent. I is con-
sistent if the parameter bindings w of all instances I = 〈e,w〉 ∈ I
are completely filled, satisfy the event roles, don’t contain dupli-
cates, and don’t violate the structure of the story arc. O is consistent
if none of the ordering constraints contradict each other, and if there
exists at least one total ordering of I that satisfiesO. π is complete

Figure 7: Execution of Algorithm to complete a partial story specification αp shown in (f). (a) Initial Partial plan πp. Solid arrows are
ordering constraints between event instances and dotted arrows are causal links. Open preconditions are highlighted in red. (b) Planning
step 1. (c) Planning step 2. Newly introduced event instance threatens causal link, highlighted in red. (d) Both options to handle threat produce
inconsistent orderings. (e) Complete partial plan πc that satisfies all preconditions and produces a consistent ordering of event instances. (g)
Linearization of πc to produce a complete story arc αc. UD: UnlockDoor, CB: CoerceIntoPressButton, TK: TakeKeyFromIncapacitated, IN:
Incapacitate, CK: CoerceIntoGiveKey, R: Robber, G: Guard, D: Door.

if every clause φ in the precondition of every event instance in I is
satisfied; there exists an effect of an instance I1 that comes before
I2 and satisfies φ, and no instance It comes between I1 and I2 that
invalidates φ.

Plan Space. The plan space is an implicit directed graph whose
nodes are partial plans and whose edges represent a transformation
from one plan to another, obtained by adding new event instances
and ordering constraints.

Linearization. The process of generating a total ordering of event
instances from a partial order plan π, used to generate a complete,
consistent story arc αc is known as linearization.

5.3.2 Algorithm

Given an incomplete, inconsistent partial ordering of event in-
stances πp, of a partial story arc αp, Plan (.) progressively com-
pletes partial instance specifications, and adds event instances to
satisfy open preconditions. Causal links which are threatened by
new event instances are protected by introducing additional order-
ing constraints. The resulting plan πc = 〈Ic,Oc,Lc〉 is linearized
to produce a complete, consistent story arc αc by generating a to-
tal ordering of the event instances Ic that satisfy the ordering con-
straints in Oc. We describe a provably sound, complete algorithm
for automatically completing partial story specifications while pre-
serving author constraints. We provide an overview below.

Parameter Bindings. Consider an incomplete event instance
I = 〈e,w〉 ∈ c where w is a partially-filled ordered set of n smart
object elements. For every unspecified parameter {wj ∈ w|wj =
∅}, we consider the domain of possible values xi = {x | x ∈
W, ri(x) = TRUE} such that the corresponding role rj ∈ re is
satisfied, filtering smart objects that were already selected as par-
ticipants by the author. Every permutation of possible participants
for the unspecified parameters is used to create the power set of all
possible parameter bindings P(I), while ensuring that each param-
eter combination has no duplicates. P is further filtered to remove
all parameter combinations that don’t satisfy the event precondi-
tions Φe, and which have duplicate parameters with other event

instances that are in the same beat to preserve the beat structure.

Initialization. An incomplete, inconsistent story arc αp is first
converted into a partial order plan πp by computing the set of event
instances I, ordering constraints O, and causal links L that are
present in αp. A dummy node I0 corresponding to the starting state
of all smart objects in the scene s0 is created and added to I. All
instances in I are ordered after I0. The set of clauses φI in the pre-
conditions of instances which are not yet satisfied are stored in A.
Additionally, the set of possible parameter bindings P(I) is also
precomputed for all inconsistent event instances that have partially-
specified event parameters. These computations are all incremen-
tally performed while the user is authoring the story, to minimize
the computational overhead of automation.

Termination Condition. The plan πp is consistent and complete
if the following conditions are met: (a) All open preconditions are
resolved, (b) both I andO are consistent, and (c) no event instance
I ∈ I threatens any of the causal links in L.

Open Precondition Selection. An open precondition clause
〈Ic, φc〉 is selected and removed from A for resolution. The order
in which the precondition clauses in A are resolved have a major
impact on the search, and can greatly reduce the the number of plan
steps required to reach a solution. We use the following lexico-
graphic ordering for A = {〈I, φ〉} : 〈k1, k2〉 ≤ 〈k′1, k′2〉 ⇐⇒
k1 < k′1 ∨ (k1 = k′1 ∧ k2 ≤ k′2), where k1 is a boolean indicating
if φ can be resolved by an existing event instance in I, and k2 is
the number of ordering constraints in O that involve I . This pri-
oritizes the selection of open preconditions which can be resolved
without searching, and event instances which are most constrained
and have the smallest number of candidate solutions to minimize
backtracking. Note that the order in which preconditions are re-
solved does not impact the soundness and completeness guarantees
of the approach.

Parameter Binding Selection. If Ic contains partially-specified
parameters, the clause φc cannot be determined. Hence, we non-
deterministically select a complete and consistent parameter bind-
ing wc fromP(Ic) to generate a plausible set of smart object partic-
ipants for the missing parameter slots. If no valid parameter combi-

nation is possible, failure is returned from that recursion level back
to a previous choice of event selection, parameter binding, or con-
straint ordering.

Event Instance Selection. An event instance Is is selected that
satisfies φc, either directly from I, or by non-deterministically
picking a new instance and adding it to I. A new causal link

Is
φc−→ Ic is established to indicate that Is satisfies φc for Ic. A

new ordering constraint Is ≺ Ic is added to ensure that Ic executes
after Is. If Is is newly instantiated: (a) Additional constraints are
introduced to ensure Is is ordered after I0, and before all instances
in the last story beat Iend. (b) A is updated to include all precon-
dition clauses φs ∈ Φs that are not satisfied. If no event instance
exists that satisfies the precondition clause, we recursively roll back
to the previous choice point.

Causal Link Protection. For every causal link I1
φc−→ I2 ∈ L

that is threatened by Is, a new consistent ordering is established
to guarantee that Is does not interfere with the causal link, either
by promoting or demoting Is. If neither ordering is consistent, we
recursively roll back to a previous choice point.

Recursive Invocation. This process is recursively repeated until
the termination condition is met, or no solution is found. There are
three non-deterministic choice points in our algorithm: (a) selection
of parameter binding, (b) event instance selection, and (c) promo-
tion or demotion of ordering constraints for threat resolution. Re-
cursive back-tracking for these choice points is performed by first
checking both ways to resolve a threat, choosing another valid se-
lection of event parameters, then backtracking to another candidate
event instance.

Linearization. A complete and consistent partial ordering of event
instances πc is totally ordered to generate the resulting story arc αc.
The last beat of the original story definition αp is added to αc, since
the story ending is enforced not to change, and the corresponding
event instances are removed from I. For every remaining event
instance I , the latest beat B in αc is found such that I is constrained
to be ordered before an instance in B, and I is added to the previous
beat. If it is the starting beat in the arc, a new beat is constructed
with I and added to the beginning of αc.

Let us revisit the example of the robber and guard, discussed earlier.
Fig. 7(a) illustrates the initial partial plan πp for the incomplete arc
(f). The start node S is a dummy node which indicates the starting
state of all smart objects. It is ordered before all other event in-
stances. The doorD is initially locked, and the guardG has the key.
Solid arrows indicate ordering constraints between event instances,
and dotted arrows are causal links. For example, the causal link
〈UD(R,D),¬Locked(D),CB(R,G)〉 indicates that the door
D must first be unlocked before the robber R can coerce the guard
G into pressing the button. A causal link between two event in-
stances implies an ordering constraint, which is not shown here for
ease of explanation. The set of open preconditions,A contains only
one element 〈UD(R,D),HasKey(R)〉 which is selected for res-
olution. A candidate event TK(R,G) is introduced into πp where
the robber takes the key from the guard. This introduces another
open clause Incapacitated(G) into A, which is resolved by
introducing an instance IN(R,G) where the robber incapacitates
the guard before taking his key (Fig. 7(c)). This introduces a threat:
IN(R,G) conflicts with the causal link, as indicated by the red ar-
row in Fig. 7(d). Both options for causal link protection (promotion
and demotion of IN(R,G)) produce inconsistent orderings, and no
possible solution can be found. The planner backtracks to the pre-
vious choice point and chooses another event instance CK(R,G)
where the robber first coerces the guard into giving the key, thus
producing a complete plan πc. The linearization of αc produces a

complete, consistent story arc αc (Fig. 7(g)).

The constraint-satisfaction solver efficiently searches through the
space of partial story arcs by building on top of classical partial-
order principles. While staying within the conceptual framework
of POP, each step is uniquely tailored to our particular problem do-
main. To handle the combinatorial complexity of searching through
the space of all permutations of event participants for all possible
sequences of events, our solver has 3 nondeterministic choice points
(parameter binding selection, event instance selection, threat reso-
lution) in comparison to 2 choice points in the classical POP solver.
The lexicographic ordering used to prioritize constraint resolution
is unique to our problem domain. The benefits of such an approach
are crucial for providing a seamless authoring experience where the
approach will always complete the story, if a possible solution ex-
ists, and will never violate any of the authors inputs.

5.4 Application

Given a story world which includes a library of smart objects and
actors, and events which encode interactions between them, the end
user authors digital stories by specifying the scene layout, and the
narrative that ensues in it. The starting configuration of the story
can be easily edited by simply dragging and dropping smart objects
and actors in the scene, and adjusting the starting state of the char-
acters. The scene configuration is completely independent of the
authored domain knowledge. The starting state of the story world
is automatically registered by CANVAS and used to filter the valid
story participants and events that are possible.

The story authoring process involves the selection and ordering of
events that take place between the characters and objects that are
present in the scene, using the CANVAS storyboard interface. We
apply CANVAS to author narratives in two scenarios: a bank and
a marketplace. The domain knowledge (environment, actors, and
events) for a bank robbery is briefly summarized in Section 5.4.1,
and Section 5.4.2 describes some authored narratives. Please refer
to the supplementary video for additional details.

5.4.1 Domain Knowledge for Bank Scenario

Smart Objects and Actors. The bank story world includes a va-
riety of smart actors including robbers, guards, customers, bank
managers and tellers. Additionally, there are a variety of smart ob-
jects for the actors to interact with, including drink dispensers, trash
cans, bank documents, and weapons for firing warning shots and in-
capacitating other actors. Note that all actors have an identical set
of affordances (e.g. unlock doors, use a baton to incapacitate some-
one), and specific roles such as guards and robbers are defined by
simply modifying their visual appearance, and their starting state.
For example, a guard may be equipped with a baton, and keycards,
thus giving him access to locked portions of the bank. The domain
knowledge for the bank scenario took 6 person-hours to author,
which is a reasonable overhead considering the ease with which
complex stories can be authored using different combinations of
these elements.

Story Events. Table 1 outlines the definition of some representa-
tive events in our event lexicon. These include different kinds of
conversations, characters cooperating to distract and incapacitate
other characters, coercion to give up items and to surrender, crowds
of characters fleeing etc. The event lexicon is modular and can be
easily extended or modified by a domain expert, or reused across
different story domains. We used a lexicon of 54 events for the
narratives described in Section 5.4.2. This domain information (the
event definitions and the state attributes and affordances for each
smart object) was authored by two project volunteers. It took 6 per-

CoerceIntoUnlockDoor(Actor a1, Actor a2, Door d). Actor a1 coerces a2

into opening the door, d. In order for this event to be successful, a1 must have
a weapon, a2 must have the keycard to open d, and must be able to access d.

IncapacitateStealthily(Actor a1, Actor a2). Actor a1 sneaks up on a2 and
incapacitates him using his weapon. Actor a1 must have a weapon and should
be able to reach a2 without being seen by him.

WarningShot(Actor a, Crowd: c). Actor a fires his weapon to warn the
crowd c. The event precondition is that a must have a weapon.

TakeWeaponFromIncapacitated(Actor a1, Actor a2). Actor a1 takes the
weapon of a2 who has been previously incapacitated. Actor a2 must have a
weapon and a1 must be able to reach a2.

DistractAndIncapacitate(Actor a1, Actor a2, Actor a3). Actor a1 dis-
tracts a2 while a3 sneaks up from behind to incapacitate a2 using his weapon.
For example, two robbers cooperate to distract and incapacitate a guard.

PressButton(Actor a, Button b). Actor a presses a button b which may have
some effect elsewhere in the scene (e.g., unlocking the vault door). Actor a
must have access to b in order to execute this event.

LockDoor(Actor a, Door d). Actor a locks the door d. In order to do this,
he needs to have the keycard and should be able to access d. This event can
be used to lock other characters in a room.

Flee(Crowd c). The members of c find the nearest exit and leave the bank.
This event can be used to trigger the response of the crowd to the arrival of the
robbers.

Table 1: Descriptions of some events for the bank robbery scenario.

son hours to author. The domain information supporting CANVAS
is very easy to edit and iterate, whether by modifying existing defi-
nitions or by adding new attributes, affordances, and events.

5.4.2 Authoring Bank Robberies

Scene Specification. Given the domain knowledge, end users can
easily author complex scenes using a combination of these smart
objects. We author a default scene which contains 65 smart objects.
These include 15 customers, 3 robbers, 2 tellers, a bank manager,
and 3 guards. The vault has a locked door which can be opened by
pressing the two buttons located in the manager’s office and teller
room. Guards are equipped with keycards to the locked doors in
the scene, and may have weapons. Bank tellers serve the customers
while the manager oversees bank operations. The customers can
interact with the manager, tellers, and each other, while wander-
ing the bank, purchasing and consuming beverages from the drink
dispenser, recycling used cans, and filling in forms. Note that, de-
pending on the author’s intent, any character in the scene can be
promoted to play more significant roles in the narrative. The stories
described below used variations of this default scene.

Story Authoring. CANVAS empowers authors to create complex
narratives with minimal effort. Within minutes, authors can pre-
visualize their stories and iterate provides the complete specifica-
tion of a few stories, where the highlighted parameters and events
were automatically generated. We refer readers to the supplemen-
tary videos for how the stories were authored, and for the resulting
animations.

The first narrative is an elaborate heist where three robbers resort
to deception and violence to rob a bank. Within the main story arc,
a subplot plays out in which the robbers double-cross each other
until only one is remaining. A narrative of this length and com-
plexity takes minutes to author, as a story arc of just 12 story beats
and 20 story events. Authors may choose to focus only on the plot
points of the story without specifying the participants, and CANVAS
automatically selects a suitable combination of actors and smart
objects (highlighted in bold) to complete the story and ensure its
consistency. In another story, the author simply specifies a desired
outcome, one in which the robber escapes with the money. The

author is then free to iterate on the synthesized narrative. We illus-
trate a more complex use case for automation. The author focuses
only on climactic plot points in the story arc, without specifying
the events leading up to them. In our example, the author speci-
fies that the robber open a locked door, and that the story end with
a bank customer coercing the robber into surrendering. CANVAS
works behind the scenes to ensure that the robber steals a key and
that the customer is equipped with a gun before enacting the sur-
render. To satisfy the latter constraint, CANVAS generates a story
in which the robber coerces the guard into dropping his weapon,
and the customer later picks up the dropped weapon while the rob-
ber distracted. Note that none of the authored events are removed
or modified during automation. The original intent of the author is
thus always preserved. The authored stories are described in detail
in [Kapadia et al. 2016b], which is included in the supplementary
material.

5.4.3 Computational Performance

With 65 smart objects, 24 affordances per smart actor, and 54
events, the bank scene’s effective branching factor is∼ 1000 by the
standard of previous approaches [Kapadia et al. 2011]. For a single-
threaded C# implementation, the computation times for automat-
ing stories were 0.1s, 0.5s, and 1.3s, respectively, on an Intel(R)
Core(TM) i7 3.2 Ghz CPU with 32 GB RAM. Additional perfor-
mance optimizations can be expected using native code and paral-
lel implementations. The synthesis of the 3D animation for pre-
visualization is instantaneous and the video is a real-time recording
of our system.

6 Computer-Assisted Authoring of Interac-
tive Narratives

This part explores new authoring paradigms and computer-assisted
authoring tools for free-form interactive narratives. We present a
new design formalism, Interactive Behavior Trees (IBT’s), which
decouples the monitoring of user input, the narrative, and how the
user may influence the story outcome. We introduce automation
tools for IBT’s, to help the author detect and automatically resolve
inconsistencies in the authored narrative, or conflicting user inter-
actions that may hinder story progression. We compare IBT’s to
traditional story graph representations and show that our formal-
ism better scales with the number of story arcs, and the degree and
granularity of user input. The authoring time is further reduced with
the help of automation, and errors are completely avoided. Our ap-
proach enables content creators to easily author complex, branching
narratives with multiple story arcs in a modular, extensible fashion
while empowering players with the agency to freely interact with
the characters in the story and the world they inhabit.

6.1 Authoring Interactive Narratives

An interactive narrative is traditionally represented as a branching
story graph where the vertices correspond to story atoms during
which the user has no outcome on the narrative, and the directed
edges represent a discrete set of choices, which allow the user to
influence the story outcome. To provide the user a dramatic story-
line in which he can heavily influence the progression and outcome
of the narrative, it is important to offer many decision points and
a high branching factor. However, increasing the involvement of
the user also heavily increases the combinatorial complexity of au-
thoring such a story graph. We identify three main requirements
towards authoring free-form interactive narrative experiences:

1. Modular Story Definition. Complex interactive narratives
have many interconnected story arcs that are triggered based

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: A complex narrative authored using CANVAS. (a) Robbers enter the bank from the back door and begin incapacitating guards. (b)
A robber fires a shot into the air to intimidate the crowd. (c) A second robber coerces the teller to (d) press a button behind his desk to unlock
the vault. (e) The robbers enter the manager’s office and coerce the manager to unlock the door leading to the vault, while also pressing the
second button needed to unlock the vault door. (f) The robbers incapacitate the manager and open the vault door. (g) The three robbers steal
the money from the vault and (h) they escape by running out the back entrance.

on user input leading to widely divergent outcomes. The com-
plexity of authoring narratives must scale linearly with the
number of story arcs, which can be defined in a modular and
independent fashion.

2. User Interactions. User interaction should be free-form,
and not limited to discrete choices at key stages of the story,
with far-reaching ramifications on the outcome of the narra-
tive. Monitoring user input and story logic should be decou-
pled to facilitate the modification of user interactions without
requiring far-reaching changes to the story definition.

3. Persistent Stories. The actions and interactions between the
user and characters over the entire course of the narrative must
persist and influence story progression.

6.2 Interactive Behavior Trees

Behavior Trees (BT’s) provide a graphical paradigm for authoring
complex narratives in a modular and extensible fashion. Story arcs
can be independently authored as subtrees and then connected to-
gether using BT control nodes to author branching narratives. Re-
cent extensions facilitate the authoring of complex multi-actor in-
teractions in a parametrizable fashion, enabling the reuse of modu-
lar plot elements, and ensures that the complexity of the narrative
scales independently of the number of characters. These properties
of BT’s make them ideally suited for authoring complex, branching
narratives (Requirement 1). However, BT’s cannot easily handle
free-form interactions (Requirement 2) and don’t have any means
of explicitly storing the past state of characters involved in the nar-
rative (Requirement 3). These challenges are described in the sup-
plementary document in detail.

To meet these requirements, we introduce a new BT design for-
malism that facilitates free-form user interaction and state persis-
tence. Interactive Behavior Trees (IBT’s), as illustrated in Fig. 9(a)
are divided into 3 independent sub-trees that are connected using
a Parallel control node. An IBT tIBT = 〈tui, tstate, tnarr =
{tarci |tarc1 . . . tarcm }, β〉 where: (1) tnarr is the narrative definition
with modular story arcs {ai}, each with their own independent sub-
tree {tarci }. (2) tui processes the user interactions. Fig. 9(b) illus-
trates the story subtree. (3) tstate monitors the state of the story to
determine if the current story arc needs to be changed. Fig. 9(b)
illustrates the story subtree. (4) The blackboard β stores the state

of the story and its characters. (5) A fourth subtree tcr is added for
conflict resolution, and will be described below.

Story Definition. tnarr is responsible for handling the narrative
progression and is further subdivided into subtrees that represent
a separate story arc. Fig. 9(b) provides an example of tnarr while
Fig. 9(c) illustrates each arc definition tarc, which is encapsulated
as a separate subtree. This introduces an assertion node, which is
checked at every frame whether the current arc is still active before
proceeding with its execution. This minor extension to the story
arc definition allows the story to instantaneously switch arcs at any
moment in response to the user’s interactions.

Monitoring User Input. tui monitors the different interactions that
are available to the user and can be easily changed depending on
the application or device. Once an input is detected, it sets the
corresponding state in the blackboard β, which is queried by tstate
to determine the current state of the story, and the active story arc.
Since tui is executed in parallel with the other subtrees, we are able
to immediately respond and register the interactions of the user and
use it to influence the narrative outcome. Fig. 9(d) illustrates an
example.

Monitoring Story State. tstate contains separate subtrees for each
story arc, which checks if the precondition for the particular arc is
satisfied. If so, β is updated to reflect the newly activated story
arc, which is used to switch the active story in tnarr. Fig. 9(e,f)
illustrates tstate and a subtree used for checking the preconditions
for an example story arc. It may be possible for the preconditions
of multiple story arcs to be satisfied at any instance, in which case
the story arcs are activated in order of priority (the order in which
they appear in tnarr). It is also possible for multiple story arcs to be
active simultaneously if they are operating on mutually exclusive
characters and objects.

Message Passing and State Persistence. The overall design of the
IBT results in three subtrees that execute independently in parallel
with one another. The blackboard β stores internal state variables
(e.g., the current active story arc) to facilitate communication be-
tween the subtrees, and maintains state persistence. tui updates β
when any input signal is detected. Tree tstate monitors β to check
if the preconditions of a particular story arc are satisfied, and up-
dates the current arc. Finally, each arc subtree in tnarr checks if it
is the current active arc before continuing. Also, the user input and
the narrative execution can update the story and character state to

"""

)

(a) (b) (c)

MonitorBallMarker MonitorBeeMarker

MonitorHoneyMarker

(d) (e) (f)

Figure 9: (a) Design formalism of Interactive Behavior Trees (IBT’s) with decoupled specification of user input, narrative definition, and
the impact of user input on story state. (b) Narrative subtree with modular story arcs. (c) Each story arc definition is encapsulated in its own
independent subtree, which first checks if this is the current active arc before proceeding with the narrative execution. (d) Subtree to monitor
user input. (e) Subtree that changes story state based on user input, which triggers branches in story arc. (f) An example subtree from (e)
which checks if all the preconditions for a particular story arc are satisfied before setting it as the current active arc.

influence the progression of the narrative at a later stage.

Independent of the specification language (story graphs, behavior
trees or any other authoring paradigm), interactive narratives re-
quire the author to consider the ramifications of all possible user in-
teractions at all points in the story, which is prohibitive for complex
stories with many different interaction modalities. To address this
challenge, we introduce a suite of automation tools that exploit do-
main knowledge to automatically identify and resolve invalid story
specifications (Section 6.4), potential user actions that may inval-
idate story arcs (Section 6.5,Section 6.6), and even automatically
synthesize complete stories (Section 6.7).

User Interactions. We define a set of user interactions u ∈ U,
which define the different ways in which a user can interact with
smart objects in the world W. User interactions are treated as spe-
cial kinds of affordances where the user is one of the affordance
participants. This allows any underlying planning framework to ac-
commodate user interactions during the planning process.

6.3 Problem Definition

Given the terminology defined above, we define a general problem
description P = 〈s0,Φg,A〉 consisting of an initial state s0, a set
of preconditions to satisfy the goal state Φg , and the set of affor-
dance instances A = {hi}, which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. We introduce the concept of a causal link to sym-
bolize a connection between two affordance instances such that
executing the postconditions of one affordance satisfies a clause
in the preconditions of the other. Causal links are represented

as l = 〈h1, φ
i
2,h2〉. φi2 defines the ith clause in Φ2 such that

φi2(Ω1(s)) = TRUE.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan Π(,)c = Plan(P) that
generates an ordering of affordance instances from s0 which satis-
fies the preconditions Φg . While POP requires more computational
power for processing a single node, it has been shown to outperform
total-order planning (TOP) approaches [Pearl 1984] when dealing
with goals that contain subgoals, allowing the planner to efficiently
operate in the search space of partial plans. POP employs the Prin-
ciple of Least Commitment where affordance execution is ordered
only when strictly needed to ensure a consistent plan. This ensures
efficiency when dealing with problems where there may exist multi-
ple possible solutions that differ only in their ordering of affordance
execution. In contrast, TOP strictly sequences actions when finding
a solution. POP is also able to efficiently work for problem defi-
nitions where the goal state is partially specified – containing only
the desired preconditions that must be satisfied. We provide a brief
overview of the algorithm below.

At each iteration, POP selects a clause φopen = 〈hi, φi〉 from
the set of open preconditions Φopen and chooses an affordance in-
stance hj ∈ A that satisfies φi. If hj is not already present, it is
inserted into the partial plan Π(,)p. hj must execute before hi,
which is specified by adding a causal link l = 〈hj , φi,hi〉. Any
instance h ∈ H that contradicts φi must happen either before hj or
after hi, and is resolved by introducing additional causal links, as
defined by the method Protect(). If hj is added for the first time, its
preconditions are added to Φopen, and the process continues until
all preconditions are satisfied: Φopen = ∅.

Integrating Plan into IBT. The plan Π(,)c generated by POP rep-
resents an ordering O of affordance instances H, which can be eas-

ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 10 illustrates an example
of how a plan is converted into its corresponding BT definition.

6.4 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story
author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance ht
associated with t such that Φt(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · snt },

which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can de-
termine whether the preconditions of an affordance instance might
be violated by any possible execution of the story arc. The supple-
mentary document details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s ∈ b, we define a problem instance P = 〈s ,Φt,A〉
and generate a plan π to add additional nodes in the tree such that
Φt is satisfied.

6.5 Conflicts

The players actions may invalidate the successful execution of con-
sistent narratives, and the author must consider the ramifications of
all possible interactions at all possible points in the narrative defi-
nition. In order to make this problem tractable, we present automa-
tion tools that automatically detect potential user interactions that
may invalidate affordance preconditions at any stage in the narra-
tive, and provide resolution strategies to accommodate user inter-
ference, while still ensuring that the narrative is able to proceed
down the intended path.

Conflicts. This allows us to formally define a conflict c as a pair
〈u, l〉 where l = 〈hi, φij ,hj〉 is an active causal link, such that if
the user performs a particular interaction u ∈ U during the execu-
tion of hi, φij may be violated. Conflicts are detected at a particular
node t if any active causal links at t are violated and can be resolved
by generating a plan that satisfies the conditions of all needed links.
Conflicts can be handled in two ways: (1) Accommodation. We
allow the user to interfere with the narrative by successfully execut-
ing u such that h fails. In this case, we need to generate a conflict
resolution strategy that is able to accomplish the same result, as
executing h. (2) Interference. The affordance instance h is unsuc-
cessfully executed and u fails. No plan is needed in this case. It is
up to the author to decide whether to accommodate or interfere for
a particular conflict. For conflicts where no plan is possible, we are
limited to interference where the user interaction is perceived to be
unsuccessful.

Conflict Resolution Subtree. We add a new subtree into the IBT
formalism tcr that is automatically populated and contains the con-
flict resolution strategies (plans) for all potential conflicts. During
narrative execution, whenever a conflict occurs, control is trans-
ferred to the corresponding subtree in tcr that contains the plan for
resolving that particular conflict.

Conflict Detection and Resolution. We check if any interac-
tion violates the active links at that node. For a potential conflict
c = 〈u, l〉, we consider the belief state b up to the execution of the
current node t in the IBT. For each state s ∈ b, we define a prob-
lem instance P = 〈s0 = Ωu(s),Φg = Φneeded〉, where Φneeded

are the combined conditions of all needed links. A plan π is gen-
erated for P and inserted into the conflict resolution subtree tcr to
accommodate u. If no plan is found, then we choose to interfere
where u is said to fail. The appropriate conflict resolution strategy
is added into tcr.

Dynamic Conflict Detection and Resolution. Static analysis of
the IBT is not able to detect all possible conflicts that may occur
during execution of the narrative. In particular, we cannot detect
conflicts (1) that occur while executing nodes in the conflict reso-
lution subtree, (2) due to user actions in one story arc that violate
the preconditions of nodes in another story arc. These unforeseen
conflicts can be handled during the execution of the narrative to dy-
namically detect and resolve conflicts. This works well in practice
as only a small number of conflicts remain undetected during static
analysis and the algorithm for conflict resolution is very efficient
and able to instantly generate plans for reasonably complex prob-
lem domains.

6.6 User Inaction

The user may choose not to execute actions that are required to
progress the narrative further. For example, a narrative may require
the user to throw a ball into the scene for two bears to play catch.
To account for potential user inaction, our automation framework
generates contingency plans where the characters in the story may
adopt alternate means to accomplish the same effect of the user in-
teraction. For each node t corresponding to an interaction u, we de-
fine a problem instance P = 〈s ,Ωu(s),A−U〉 where the action
space A − U only considers affordance instances with smart ob-
jects and discounts user interactions. This is used to generate a plan
that achieves the same effect as Ωu(s) and is integrated into the
original IBT definition, as shown in Fig. 11. During narrative exe-
cution, if the user does not perform the desired interaction within a
reasonable time threshold, it is said to fail and the contingency plan
is executed.

6.7 Automated Narrative Synthesis

Authors may harness the power of automation to automatically syn-
thesize narratives which can be integrated into the IBT and edited to
meet author requirements. At a given node t in the IBT, the author
simply specifies a desired set of preconditions Φg . This translates
into multiple problem instances P = 〈s ,Φg,A〉 for each state s in
the belief state b, obtained as a result of executing the IBT up to t.
A plan π is generated for each problem instance P and inserted into
the IBT, to provide a narrative that accommodates author-specified
preconditions Φg .

We developed an interactive narrative authored using the tools de-
scribed above and deployed it as an Augmented Reality application
on mobile devices. AR applications on mobile devices with mul-
tiple sensors benefit from versatile input mechanisms and provide
a strong use case for free-form interactive narratives with a host
of interaction possibilities. The game application was implemented

Enter(bear2)

Pickup(ball, bear1)

Give(bear1, bear2, ball))Start State

nInScene(bear2) InScene(bear2)

nHolds(ball, bear2)

nHolds(ball, bear1)
a nIsAttached(ball)
a InScene(bear1)
a InScene(ball)

InScene(bear1)
a Holds(ball, bear1)

Start State: nHolds(ball, bear) a InScene(bear1) a InScene(ball)
 a nHolds(ball, bear2) a nIsAttached(ball) a nInScene(bear2)

Goal State: Holds(ball, bear1) a InScene(bear1)
 a nHolds(ball, Bear2) a InScene(bear2)

¬

¬

¬

¬
¬

¬

¬¬

¬
∧∧

∧
∧

∧
∧

∧
∧∧

∧ ∧
∧

(a) (b)

Figure 10: (a) Illustrates a sample plan constructed by POP. The edges represent the causal links between the different affordances. (b) A
concrete mapping of the plan to a BT.

Figure 11: Plan generation to accommodate user inaction. Our
system automatically generates an alternate strategy (highlighted
nodes) to accommodate potential user inactions that may hinder
narrative progression.

using the Unity3D game engine with a data-driven character anima-
tion system. The animation functionality is exposed to the author
as affordances (e.g., LookAt(obj), Reach(target)) which can be
invoked as leaf nodes in BT’s. Smaller marker images were used
as an additional interaction modality to trigger state changes and
branch the story in different directions. Please refer to the supple-
mentary document for additional implementation details.

6.8 Scenario and Story Definition

We author a narrative with two male bears B1, B2, and a female
bear B3. A shopkeeper B4 is also present who is able to sell toys
to the other bears. The characters have generic state attributes such
as InScene, IsHappy, IsPanicked, IsPlaying, and rela-
tionships with other characters and smart objects such as Knows,
Holds, and Loves. Other smart objects include a soccer ball, a
beach ball (can be picked up by the bears and used to play catch), a
honeypot (can be consumed to make the bears happy), bees (scare
the bears away), and flowers (distract the bees). The smart objects
are equipped with a variety of affordances including Converse,
Argue, ThrowBall, and EatHoneywhich may include the user
as a participant. For example, the ball has a PickUp affordance
which the user can trigger to pick the ball from the scene. The rep-
resentative affordances defined for the smart objects used to author
the interactive narrative are outlined in the supplementary document

for reference.

Baseline Story. The first bear B1, enters the scene and looks up
at the player with curiosity. The player can freely interact with
B1 using a host of interaction possibilities or introduce the second
bear B2 into the scene. B2 asks B1 for a beach ball so they can
play catch. B1 is unable to find a ball and turns to the player for
help. The player may choose to give a soccer ball to the bears but
they only want to play with the beach ball. Depending on where
the player throws the beach ball, B1 or B2 may pick it up which
influences future branches in the story. For example, B1 chooses to
involve the player in the game of catch if the player gave him the
ball.

Additional Interactions. At any point, the player may use a hon-
eypot image marker to trigger a honeypot in the world. The bears
leave aside whatever they are doing, and make a beeline towards
the honeypot, which represents one possible conclusion of the story.
The player may also choose to trigger bees into the world, which
chase the bears and disrupt the current arc (e.g., having a conversa-
tion, playing catch). Flowers may then be used to distract the bees
and save the bears. Fig. 5 illustrates an example execution of the
authored narrative.

State Persistence. The player’s choices have ramifications later on
in the story. For example, B1 remembers if the player interacted
him with at the beginning of the narrative, or helped him by giving
him the ball, and includes him in the game of catch by periodically
throwing him the ball. If the player adopts an antagonistic approach
(e.g., by triggering bees), the bears are less friendly towards him.

Freedom of Interaction. Note that each of these interactions are
possible at any point, and are not limited to discrete events at key
stages in the narrative. For example, the player may choose to trig-
ger the bees or the honeypot at the very beginning of the story, or
while the bears are playing ball, and the story will naturally pro-
ceed as per the author’s intentions. These different story arcs are
authored as modular, independent units in the IBT and can be trig-
gered at any stage without the need for complex connections and
state checks in the story definition. The above narrative represents
a very simple baseline to demonstrate the potential to author free-
form interactive narrative experiences. IBT’s empower the player
with complete freedom of interaction where he may choose to play
ball with the bears, give them honey, or simply wreak havoc by re-
leasing a swarm bees at any point of time. The interactions elicit
instantaneous and plausible interactions from the characters while

staying true to the narrative intent.

Benefits of Automation. The automation tools described here fa-
cilitate the authoring process in a variety of ways.

Inconsistencies. The author specifies a story where B1 gives the
ball to B2 without having the ball in his possession. The invalid
preconditions are automatically detected and the appropriate nodes
in the authored story arc are highlighted. Our system can automat-
ically resolve inconsistencies by generating additional nodes in the
story definition to satisfy the invalid preconditions. In this example,
B1 requests the player to throw the ball before proceeding to hand
it to B2.

Conflicts. Our system automatically detects potential user actions
(or inactions) that may cause conflicts in the story. For example, the
player may steal the ball from the bears during their game of catch
thus invalidating the PlayBall arc, and our system automatically
generates a strategy for the bears to request the player to return
the ball. If player does not perform the expected interaction (e.g.,
does not give the bears the ball), an alternate strategy is generated
where the bears find an alternative means to finding the ball. In
this scenario, the bear purchases the ball from a vendor who in turn
requires him to get money.

Automatic Story Synthesis. The author can simply specify desired
preconditions and our system can generate story arcs that lead to
the desired outcome. For example, the author may specify that the
female bear B3 must fall in love with B2. A plan is generated
whereby B2 acquires the beach ball, which is desired by B3 in
order to win her heart.

7 Authoring Complexity of Interactive Narra-
tives

In the context of software engineering, cyclomatic complexity
quantifies the number of linearly independent paths through the pro-
gram by measuring the number of branches in the code, and serves
as a standard criteria for code evaluation without the need for dy-
namic code analysis. By analogy, interactive narratives that account
for the different ways a user may influence the story outcome re-
quire many decision points, and are complex to author. For this
reason, we use cyclomatic complexity to provide a reasonable the-
oretical estimate of the authoring complexity for interactive narra-
tives. Cyclomatic complexity, c(g) is computed by first converting
the program into its equivalent control flow graph (CFG) represen-
tation g, where the nodes correspond to atomic commands, and the
directed edges connect commands that execute in sequence. c can
be calculated as c(g) = p(g) + 1, where p(g) is the number of
decision points in the program. However, it assumes that there is a
single termination point in the program which is not the case with
BT’s where every node may terminate with success or failure. Ad-
ditionally, there is a third “runnning” state that is returned at each
frame while the node is still executing. To generalize the measure
of c(g) for multiple termination points, we use a modified equation
shown below where s(g) denotes the number of exit points in g.

c(g) = p(g)− s(g) + 2 (2)

7.1 Computing Cyclomatic Complexity for Behavior
Trees

Fig. 12 illustrates the equivalent control flow representations for the
different control nodes used for defining behavior trees, which are

used to compute its cyclomatic complexity. All subsequent calcula-
tions of c(.) assuming that the behavior trees are converted to their
equivalent control flow graphs.

Leaf Node. A leaf node tleaf represents an atomic command in
a BT which returns either success or failure. If it is in the “run-
ning” state, it continues executing itself until it succeeds or fails.
Fig. 12(a) shows the CFG for a leaf node. Depending on the num-
ber of return states in the particular leaf node implementation, we
have p(tleaf) = {0, 1, 2} and s(tleaf) = {1, 2}. If the leaf node
immediately returns success or failure without using the running
state, we have c(tleaf) = 1. If the leaf node can enter the running
state, the complexity is c(tleaf) = 2.

Sequence Node. A sequence node tseq returns failure if any one of
its child nodes fails, else it returns success. If a child returns “run-
ning”, it simply continues executing this child until it has reached
failure or success. Fig. 12(b) illustrates the CFG for tseq. To calcu-
late c(tseq) of tseq with a set of m child nodes {ti|t1, t2 . . . tm},
we need to consider that each child node may be its own subtree
with multiple decision points.

p(tseq) =

m∑
i=1

p(ti), s(tseq) = 2,

∴ c(tseq) =

m∑
i=1

p(ti) (3)

Selector Node. The selector node tsel returns success as soon as its
first child node returns success, and produces a similar control flow
graph as compared to tseq (Fig. 12(c)). Hence, c(tsel) = c(tseq).

Loop Node. The loop node tloop is used to repeatedly execute its
child node tc until a certain condition is met. A loop node may only
have a single decorator or leaf node as its child and does not define
how to traverse through multiple children. The following termina-
tion conditions may be used: (1) loop until success, (2) loop until
failure, (3) loop N times, (4) loop forever. Fig. 12(d) illustrates the
loop node which terminates when its child node returns success. It
has only one termination node, and an additional decision point is
introduced for looping.

p(tloop) = 1 + p(tc), s(tloop) = 1,

∴ c(tloop) = p(tc) + 2 (4)

The same calculations apply for a loop node that repeats until fail-
ure. For tloop which repeats a fixed number of times.

p(tloop) = 1 + p(t), s(tloop) = 2,

∴ c(tloop) = p(t) + 1 (5)

Fig. 12(e) illustrates a loop node that never returns. Since the node
never terminates and has neither a decision point nor an exit point,
we only need to consider the child of the loop node.

p(tloop) = p(t), s(tloop) = 0,

∴ c(tloop) = c(t) (6)

Parallel Node. The parallel node tpar executes its child nodes in
parallel and has two types depending on the termination condition:
(1) Selector Parallel: It executes until any child node returns suc-
cess or all of them return failure. (2) Sequence Parallel: It executes
until any child node returns failure or all of them succeed. Fig. 12(f)
illustrates the control flow graph of a selector parallel node. An ad-
ditional node “Sync” is used to symbolize the synchronization bar-
rier between the child nodes and termination. The sequence parallel

A

Leaf Node Sequence (AND)

A B

 Selector (OR)

A B A

Loop (until Success)

A

Loop (forever) Selector Parallel

A B

II

A

Failure Success
B

Failure Success

A

B

Failure Success

A
A

Success

Failure A

Success

Failure
A

Success Sync

B

Failure

(a) Leaf (b) Sequence (c) Selector (d) Loop until success (e) Loop Forever (f) Selector Parallel

Figure 12: Control flow graphs for the different control nodes used in Behavior Trees.

node exhibits similar behavior and both their complexity measures
can be calculated as shown below.

p(tpar) = 2 ·
m∑
i=1

p(ti), s(tpar) = 2,

∴ c(tpar) = 2 ·
m∑
i=1

p(ti) (7)

7.2 Authoring Complexity of Interactive Narratives

Using the complexity measure described above, we compare the au-
thoring complexity of traditional story graphs, naive BT definitions
for interactive narratives, and IBT’s.

Story Graphs. For story graphs gs, a linear narrative represents a
lower bound on c(gs) = 1 with no decision points. For interactive
narratives however, an upper bound on the complexity represents a
branching story graph where all possible user interactions are pos-
sible at each stage in the story, which is supported by IBT’s. For
a story graph gs with m story arcs {ai|a1 . . . am}, each with |ai|
number of nodes, and d possible user interactions, there will be
a maximum of d + 1 outgoing edges per node in gs. Therefore,
each node represents d decision points. Additionally, the number
of exit points depends on how many story arcs can end the story
1 ≤ s(gs) ≤ m . We calculate c(gs) as follows:

c(gs) = d ·
(

m∑
i=1

|ai|
)
− s(gs) + 2 (8)

Interactive Behavior Trees. The benefit of an IBT tIBT is that
the subtrees tui, tstate, tnarr are all independent to each other and
run in parallel using a Parallel Sequence node. Additionally, each
subtree has a Loop forever node at its top, Hence, we can consider
each subtree as an independent program and the total complexity
c(tIBT) can be computed by adding the complexities of each in-
dependent subtree. We briefly describe the calculation of c(tIBT)
below.

tui simply checks the different interactions in a sequence without
any branching. As a result, c(tui) = 1. tstate checks if all the
preconditions for each arc are satisfied and sets the current story arc
if needed. For li nodes per story arc ai, (li − 1) of those nodes are
assertion nodes that represent a decision point and the last one sets
the current story arc. Hence, c(tstate) =

∑m
i=1(li − 1). However,

tui and tstate can be automatically generated , thus mitigating their
authoring complexity.

The story subtree tnarr = {tarci |tarc1 ·tarcm } consists of a subtree for
each story arc ai that additionally checks if it is the current story arc
before proceeding to execute the narrative (Fig. 9(d)). This ensures
that story arcs can be switched seamlessly at any point in the narra-
tive. This introduces 2 more decision points per arc, in addition to
the arc complexity. The number of decision points p(tarci) for the
ith story arc is p(tarci) = 2 · (2 + p(ai)). The resulting complexity
is c(tnarr) = 4 · m +

∑m
i=1 2 · p(ai). By automatically generat-

ing the structure of each story arc, c (tnarr) is reduced where the
author is only concerned with authoring the actual narrative. The
conflict resolution subtree tcr is automatically generated and does
not need to be authored. Hence, The overall complexity c(tIBT) is
calculated as follows:

c(tIBT) = c(tui) + c(tstate) + c(tnarr)

= 1 + 4 ·m +

m∑
i=1

(2 · p(ai) + (li − 1))

≈
m∑
i=1

2 · p(ai) (with automation)

(9)

Conclusion. Eq. 8 shows that the number of user interactions and
the number of nodes in the story arcs have a multiplicative effect
on the authoring complexity for story graphs. This limits content
creators to choose between freedom of interaction and the com-
plexity of the narrative to prevent the authoring complexity from
becoming prohibitive. In contrast, the number of decision points in
the story arc have a linear effect on c(tIBT), while the number of
ways a user can interact has no impact on the authoring complex-
ity (Eq. 9). This complexity is further reduced due to the benefits
of computer-assisted authoring, thus allowing content creators to
create compelling interactive narrative experiences with free-form
user interaction, without being burdened by limitations in the spec-
ification language and having to consider the ramifications of all
possible user interactions at all points in the narrative.

8 Final Notes

This short course systematically presents an end-to-end system
for the computer-assisted authoring of interactive animated stories.
This course introduces logical representations for story worlds,
graphical abstractions for defining story worlds and authoring sto-
ries, and algorithms that automatically detect and resolve incon-
sistencies in stories. A formal analysis shows that the proposed
formalisms help mitigate the authoring complexity of interactive
narratives, in comparison to existing story representations.

Like any intelligent system, our automation tool is only as good
as its domain knowledge, which is currently specified by experts.
Enabling end users to not only author their own stories, but also
build their own unique story worlds, is an extremely relevant and
challenging question. Additionally, a promising direction for fu-
ture work is to automatically create knowledge bases from existing
or crowd-sourced data [Li and Riedl 2015] which can be used for
narrative synthesis.

References

CAVAZZA, M., CHARLES, F., AND MEAD, S. J. 2002. Character-
based interactive storytelling. IEEE Intelligent Systems 17, 4
(July), 17–24.

FIKES, R. E., AND NILSSON, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving. Artifi-
cial Intelligence.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive
modeling: Knowledge, reasoning and planning for intelligent
characters. In ACM SIGGRAPH, 29–38.

GORDON, A., VAN LENT, M., VELSEN, M. V., CARPENTER, P.,
AND JHALA, A. 2004. Branching Storylines in Virtual Reality
Environments for Leadership Development. In AAAI, 844–851.

HA, S., MCCANN, J., LIU, C. K., AND POPOVI, J. 2013. Physics
storyboards. Computer Graphics Forum 32, 2pt2, 133–142.

HART, P. E., NILSSON, N. J., AND RAPHAEL, B. 1972. Correc-
tion to ”a formal basis for the heuristic determination of mini-
mum cost paths”. SIGART Bull., 37, 28–29.

HOFFMANN, J., PORTEOUS, J., AND SEBASTIA, L. 2004. Or-
dered landmarks in planning. J. Artif. Intell. Res. (JAIR) (JAIR)
22, 215–278.

JHALA, A., RAWLS, C., MUNILLA, S., AND YOUNG, R. M.
2008. Longboard: A sketch based intelligent storyboarding tool
for creating machinima. In FLAIRS Conference, AAAI Press,
386–390.

JORDAO, K., PETTRÉ, J., CHRISTIE, M., AND CANI, M.-P. 2014.
Crowd Sculpting: A space-time sculpting method for populating
virtual environments. Computer Graphics Forum 33, 2 (Apr.).

KALLMANN, M., AND THALMANN, D. 1999. Direct 3d interac-
tion with smart objects. In Proceedings of the ACM Symposium
on Virtual Reality Software and Technology, ACM, New York,
NY, USA, VRST ’99, 124–130.

KAPADIA, M., SINGH, S., REINMAN, G., AND FALOUTSOS, P.
2011. A behavior-authoring framework for multiactor simula-
tions. Computer Graphics and Applications, IEEE 31, 6, 45 –55.

KAPADIA, M., FALK, J., ZÜND, F., MARTI, M., SUMNER,
R. W., AND GROSS, M. 2015. Computer-assisted authoring
of interactive narratives. In Proceedings of the 19th Symposium
on Interactive 3D Graphics and Games, ACM, New York, NY,
USA, i3D ’15, 85–92.

KAPADIA, M., FALK, J., ZUND, F., MARTI, M., SUMNER,
R. W., AND GROSS, M. H. 2015. Computer-assisted author-
ing of interactive narratives. In Proceedings of the 19th Sym-
posium on Interactive 3D Graphics and Games, San Francisco,
CA, USA, February 27 - March 01, 2015, ACM, J. Keyser, P. V.
Sander, K. Subr, and L.-Y. Wei, Eds., ACM, 85–92.

KAPADIA, M., ZUND, F., FALK, J., MARTI, M., AND SUMNER,
R. W. 2015. Evaluating the authoring complexity of interactive

narratives for augmented reality applications. In Proceedings of
the 10th International Conference on the Foundations of Digital
Games, FDG 2015, Pacific Grove, CA, USA, June 22-25, 2015,
Society for the Advancement of the Science of Digital Games,
J. P. Zagal, E. MacCallum-Stewart, and J. Togelius, Eds., Society
for the Advancement of the Science of Digital Games.

KAPADIA, M., FREY, S., SHOULSON, A., SUMNER, R. W., AND
GROSS, M. 2016. CANVAS: Computer-assisted Narrative An-
imation Synthesis. In ACM SIGGRAPH/EG SCA, Eurographics,
SCA ’16.

KAPADIA, M., FREY, S., SHOULSON, A., SUMNER, R. W.,
AND GROSS, M. H. 2016. CANVAS: computer-assisted
narrative animation synthesis. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
Zurich, Switzerland, July 11-13, 2016, Eurographics Association
/ ACM, B. Solenthaler, M. Teschner, L. Kavan, and C. Wojtan,
Eds., Eurographics Association / ACM, 199–209.

KAPADIA, M., SHOULSON, A., STEIMER, C., OBERHOLZER, S.,
SUMNER, R. W., AND GROSS, M. 2016. An event-centric
approach to authoring stories in crowds. In Proceedings of the
9th International Conference on Motion in Games, ACM, New
York, NY, USA, MIG ’16, 15–24.

KELLEHER, C., PAUSCH, R., AND KIESLER, S. 2007. Story-
telling alice motivates middle school girls to learn computer pro-
gramming. In ACM SIGCHI Conference on Human Factors in
Computing Systems, 1455–1464.

KIM, M., HYUN, K., KIM, J., AND LEE, J. 2009. Synchronized
multi-character motion editing. In ACM SIGGRAPH.

KIM, M., HWANG, Y., HYUN, K., AND LEE, J. 2012. Tiling
motion patches. In ACM SIGGRAPH / Eurographics SCA, 117–
126.

KIM, J., SEOL, Y., KWON, T., AND LEE, J. 2014. Interactive
manipulation of large-scale crowd animation. ACM Transactions
on Graphics (SIGGRAPH 2014, To Appear) 33.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. In Proceedings of the 29th Annual Conference on Com-
puter Graphics and Interactive Techniques, ACM, New York,
NY, USA, SIGGRAPH ’02, 473–482.

KURLANDER, D., SKELLY, T., AND SALESIN, D. 1996. Comic
chat. In ACM SIGGRAPH, 225–236.

KWON, T., LEE, K. H., LEE, J., AND TAKAHASHI, S. 2008.
Group motion editing. In ACM SIGGRAPH 2008 papers, ACM,
New York, NY, USA, SIGGRAPH ’08, 80:1–80:8.

LEE, K. H., CHOI, M. G., AND LEE, J. 2006. Motion patches:
building blocks for virtual environments annotated with motion
data. In ACM SIGGRAPH, 898–906.

LEE, J. 2010. Introduction to data-driven animation: Programming
with motion capture. In ACM SIGGRAPH ASIA 2010 Courses,
ACM, New York, NY, USA, SA ’10, 4:1–4:50.

LI, B., AND RIEDL, M. O. 2015. Scheherazade: Crowd-powered
interactive narrative generation. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence.

LOYALL, A. B. 1997. Believable agents: building interactive per-
sonalities. PhD thesis, Pittsburgh, PA, USA.

MATEAS, M. 2002. Interactive drama, art and artificial intelli-
gence. PhD thesis, Pittsburgh, PA, USA.

MENOU, E. 2001. Real-time character animation using multi-
layered scripts and spacetime optimization. In ICVS, 135–144.

MINTON, S., DRUMMOND, M., BRESINA, J. L., AND PHILIPS,
A. B. 1992. Total order vs. partial order planning: Factors
influencing performance. In KR, Morgan Kaufmann, 83–92.

PEARL, J. 1984. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

PERLIN, K., AND GOLDBERG, A. 1996. Improv: A system
for scripting interactive actors in virtual worlds. In ACM SIG-
GRAPH, 205–216.

PORTEOUS, J., TEUTENBERG, J., PIZZI, D., AND CAVAZZA, M.
2011. Visual programming of plan dynamics using constraints
and landmarks. In Proceedings of the 21st International Con-
ference on Automated Planning and Scheduling, ICAPS 2011,
Freiburg, Germany June 11-16, 2011.

POULAKOS, S., KAPADIA, M., SCHUPFER, A., ZUND, F., SUM-
NER, R., AND GROSS, M., 2015. Towards an accessible inter-
face for story world building.

POULAKOS, S., KAPADIA, M., MAIGA, G. M., ZÜND, F.,
GROSS, M., AND SUMNER, R. W. 2016. Evaluating accessi-
ble graphical interfaces for building story worlds. In Interactive
Storytelling: 9th International Conference on Interactive Digi-
tal Storytelling, ICIDS 2016, Los Angeles, CA, USA, November
15–18, 2016, Proceedings 9, Springer, 184–196.

RIEDL, M. O., AND BULITKO, V. 2013. Interactive narrative: An
intelligent systems approach. AI Magazine 34, 1, 67–77.

ROSINI, R., 2014. Storybricks. Namaste Entertainment Inc.

SACERDOTI, E. D. 1975. The nonlinear nature of plans. In IJCAI,
206–214.

SHOULSON, A., GARCIA, F. M., JONES, M., MEAD, R., AND
BADLER, N. I. 2011. Parameterizing behavior trees. In Motion
in Games, 144–155.

SHOULSON, A., GILBERT, M. L., KAPADIA, M., AND BADLER,
N. I. 2013. An event-centric planning approach for dynamic
real-time narrative. In Proceedings of Motion on Games, ACM,
New York, NY, USA, MIG ’13, 99:121–99:130.

SHOULSON, A., KAPADIA, M., MARSHAK, N., AND BADLER,
N. I. 2014. Adapt: The agent development and prototyp-
ing testbed. IEEE Transactions on Visualization and Computer
Graphics 99, 1.

SHUM, H. P. H., KOMURA, T., SHIRAISHI, M., AND YAMAZAKI,
S. 2008. Interaction patches for multi-character animation. In
ACM SIGGRAPH Asia, 114:1–114:8.

SKORUPSKI, J., AND MATEAS, M. 2010. Novice-friendly author-
ing of plan-based interactive storyboards. In AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment,
AIIDE.

STOCKER, C., SUN, L., HUANG, P., QIN, W., ALLBECK, J. M.,
AND BADLER, N. I. 2010. Smart events and primed agents. In
IVA, vol. 6356, 15–27.

SUSSMAN, G. J. 1975. A computer model of skill acquisition.
Artificial intelligence series. American Elsevier Pub. Co., New
York.

VILHJÁLMSSON, H., CANTELMO, N., CASSELL, J., E. CHAFAI,
N., KIPP, M., KOPP, S., MANCINI, M., MARSELLA, S., MAR-
SHALL, A. N., PELACHAUD, C., RUTTKAY, Z., THÓRISSON,
K. R., WELBERGEN, H., AND WERF, R. J. 2007. The behav-
ior markup language: Recent developments and challenges. In
Intelligent Virtual Agents, 99–111.

WHITLEY, K. N., AND BLACKWELL, A. F. 1997. Visual pro-
gramming: The outlook from academia and industry. In Seventh
Workshop on Empirical Studies of Programmers, ACM, ESP
’97, 180–208.

WON, J., LEE, K., HODGINS, J., O’SULLIVAN, C., AND LEE,
J. 2014. Generating and ranking diverse multi-character inter-
actions. In ACM SIGGRAPH Asia.

YU, Q., AND TERZOPOULOS, D. 2007. A decision network frame-
work for the behavioral animation of virtual humans. In ACM
SIGGRAPH/Eurographics SCA, 119–128.

5/9/17

1

Computational	
Narrative	

5/9/17

2

animated

5/9/17

3

Motivation

• Want to
– Build story worlds
– Utilize computational intelligence
– Automatically generate narratives

• Requires platform to
– Specify domain knowledge of the story world
– Provide a graphical interface to support world creation

5/9/17

4

Design principles

• Usability à Accessible GUI
• Reuse à Cost reduction
• Bi-directional workflow à Iterative Design
• Automation à Complexity reduction

Related Work

• Manual authoring
• Automated authoring
• Story World Building

5/9/17

5

Manual Authoring

• Scripted Approaches [Loyall 1997; Mateas 2002]

• Rule-based Systems [Perlin and Goldberg 1996; Menou 2001]

• Façade [Mateas and Stern 2003, 2004; Dow et al. 2006]

• Story Graphs [Gordon et al. 2004]

• Behavior Trees [Hecker et al. 2007; Isla 2008; Shoulson et al. 2011;
Millington and Funge 2008]

Automated Authoring

• Domain-Independent Planners [Fikes and Nilsson 1971;
Sacerdoti 1975]

• Narrative generation systems [Riedl et al. 2003, Riedl and Young
2006]

• Virtual Directors & Drama Managers [Magerko et al. 2004,
Riedl et al. 2008, Shoulson et al. 2013]

5/9/17

6

Domain Knowledge

• Smart Objects
• State
• Affordances
• Events

Domain Knowledge

• Smart Objects
• State
• Affordances
• Events

(a) (b) (c)

(d) (e) (f)

Figure 3: (a) Design formalism of Interactive Behavior Trees (IBT’s) with decoupled specification of user input, narrative definition, and
the impact of user input on story state. (b) Narrative subtree with modular story arcs. (c) Each story arc definition is encapsulated in its own
independent subtree which first checks if this is the current active arc before proceeding with the narrative execution. (d) Subtree to monitor
user input. (e) Subtree that changes story state based on user input which triggers branches in story arc. (f) An example subtree from (e)
which checks if all the preconditions for a particular story arc are satisfied before setting it as the current active arc.

smart objects, how user input may change story state, and use it to
detect and resolve invalid stories. Below we describe our represen-
tation of domain knowledge, which balances ease of specification
and efficiency of automation.

Smart Objects. The virtual world W consists of smart objects
with embedded information about how an actor can use the object.
We define a smart object w = hF, si with a set of advertised af-
fordances f 2 F and a state s = h✓, Ri, which comprises a set of
attribute mappings ✓, and a collection of pairwise relationships R
with all other smart objects in W. An attribute ✓(i, j) is a bit that
denotes the value of the jth attribute for w

i

. Attributes are used
to identify immutable properties of a smart object such as its role
(e.g., a ball or a bear) which never changes, or dynamic properties
(e.g., IsHappy) which may change during the story. A specific re-
lationship R

a

is a sparse matrix of |W|⇥ |W|, where R
a

(i, j) is a
bit that denotes the current value of the ath relationship between w

i

and w
j

. For example, an IsFriendOf relationship indicates that
w

i

is a friend of w
j

. Note that relationships may not be symmetric,
R

a

(i, j) 6= R
a

(j, i) 8 (i, j) 2 |W| ⇥ |W|. Each smart object’s
state is stored as a bit vector encoding both attributes and relation-
ships. The overall state of the world W is defined as the compound
state s = {s1, s2 · · · s|W|} of all smart objects w 2 W which is
encoded as a matrix of bit vectors. sw denotes the compound state
of a set of of smart objects w ✓W.

Affordances. An affordance f = hw
o

,w
u

,�,⌦i is an advertised
capability offered by a smart object that takes the owner of that
affordance w

o

and one or more smart object users w
u

, and ma-
nipulates their states. For example, a smart object such as a ball
can advertise a Throw affordance, allowing another smart object to
throw it. A precondition � : sw {TRUE,FALSE} is an ex-
pression in conjunctive normal form on the compound state sw of
w : {w

o

,w
u

} that checks if f can be executed based on their cur-

rent states. A precondition is fulfilled by w if �
f

(w) = TRUE.
The postcondition ⌦ : s ! s

0
transforms the current state of

all participants, s to s
0

by executing the effects of the affordance.
When an affordance fails, s

0
= s .

An affordance instance h = hf,wi includes a set of smart objects
w ⇢W such that �

f

(sw) = TRUE. To map affordance instances
as leaf nodes of a BT, execution of an affordance returns a status
which takes three possible values. It returns Running if the affor-
dance is still executing. If it succeeds, the postconditions ⌦

f

are
applied to the state of all smart object participants. If it fails, there
is no change in state. This ensures that affordances are considered
as atomic units.

Affordance f (w
o

, w
u

):
Precondition �

f

:
CNF expression on compound state s of w

o

and w
u

Postcondition ⌦
f

:
Change in state of w

o

and w
u

after successfully executing f
Status �:

Running: Continue executing f

Success: s
0
= ⌦

f

(s);
Failure: s

0
= s ;

Figure 4: Affordance definition.

User Interactions. We define a set of user interactions u 2 U
which define the different ways in which a user can interact with
smart objects in the world W. User interactions are treated as spe-
cial kinds of affordances where the user is one of the affordance
participants. This allows any underlying planning framework to ac-
commodate user interactions during the planning process.

5/9/17

7

Domain Knowledge

• Smart Objects
• State
• Affordances
• Events

(a) (b) (c)

(d) (e) (f)

Figure 3: (a) Design formalism of Interactive Behavior Trees (IBT’s) with decoupled specification of user input, narrative definition, and
the impact of user input on story state. (b) Narrative subtree with modular story arcs. (c) Each story arc definition is encapsulated in its own
independent subtree which first checks if this is the current active arc before proceeding with the narrative execution. (d) Subtree to monitor
user input. (e) Subtree that changes story state based on user input which triggers branches in story arc. (f) An example subtree from (e)
which checks if all the preconditions for a particular story arc are satisfied before setting it as the current active arc.

smart objects, how user input may change story state, and use it to
detect and resolve invalid stories. Below we describe our represen-
tation of domain knowledge, which balances ease of specification
and efficiency of automation.

Smart Objects. The virtual world W consists of smart objects
with embedded information about how an actor can use the object.
We define a smart object w = hF, si with a set of advertised af-
fordances f 2 F and a state s = h✓, Ri, which comprises a set of
attribute mappings ✓, and a collection of pairwise relationships R
with all other smart objects in W. An attribute ✓(i, j) is a bit that
denotes the value of the jth attribute for w

i

. Attributes are used
to identify immutable properties of a smart object such as its role
(e.g., a ball or a bear) which never changes, or dynamic properties
(e.g., IsHappy) which may change during the story. A specific re-
lationship R

a

is a sparse matrix of |W|⇥ |W|, where R
a

(i, j) is a
bit that denotes the current value of the ath relationship between w

i

and w
j

. For example, an IsFriendOf relationship indicates that
w

i

is a friend of w
j

. Note that relationships may not be symmetric,
R

a

(i, j) 6= R
a

(j, i) 8 (i, j) 2 |W| ⇥ |W|. Each smart object’s
state is stored as a bit vector encoding both attributes and relation-
ships. The overall state of the world W is defined as the compound
state s = {s1, s2 · · · s|W|} of all smart objects w 2 W which is
encoded as a matrix of bit vectors. sw denotes the compound state
of a set of of smart objects w ✓W.

Affordances. An affordance f = hw
o

,w
u

,�,⌦i is an advertised
capability offered by a smart object that takes the owner of that
affordance w

o

and one or more smart object users w
u

, and ma-
nipulates their states. For example, a smart object such as a ball
can advertise a Throw affordance, allowing another smart object to
throw it. A precondition � : sw {TRUE,FALSE} is an ex-
pression in conjunctive normal form on the compound state sw of
w : {w

o

,w
u

} that checks if f can be executed based on their cur-

rent states. A precondition is fulfilled by w if �
f

(w) = TRUE.
The postcondition ⌦ : s ! s

0
transforms the current state of

all participants, s to s
0

by executing the effects of the affordance.
When an affordance fails, s

0
= s .

An affordance instance h = hf,wi includes a set of smart objects
w ⇢W such that �

f

(sw) = TRUE. To map affordance instances
as leaf nodes of a BT, execution of an affordance returns a status
which takes three possible values. It returns Running if the affor-
dance is still executing. If it succeeds, the postconditions ⌦

f

are
applied to the state of all smart object participants. If it fails, there
is no change in state. This ensures that affordances are considered
as atomic units.

Affordance f (w
o

, w
u

):
Precondition �

f

:
CNF expression on compound state s of w

o

and w
u

Postcondition ⌦
f

:
Change in state of w

o

and w
u

after successfully executing f
Status �:

Running: Continue executing f

Success: s
0
= ⌦

f

(s);
Failure: s

0
= s ;

Figure 4: Affordance definition.

User Interactions. We define a set of user interactions u 2 U
which define the different ways in which a user can interact with
smart objects in the world W. User interactions are treated as spe-
cial kinds of affordances where the user is one of the affordance
participants. This allows any underlying planning framework to ac-
commodate user interactions during the planning process.

Domain Knowledge

• Smart Objects
• State
• Affordances
• Events

5/9/17

8

Domain Knowledge

• Smart Objects
• State
• Affordances
• Events

Domain Knowledge

• Smart Objects
• State
• Affordances
• Events

5/9/17

9

Domain Knowledge

• Smart Objects
• State
• Affordances
• Events

Domain Knowledge

• Smart Objects
• State
• Affordances
• Events

5/9/17

10

Domain Knowledge

• Smart Objects
• State
• Affordances
• Events

Parameterized Behavior
Trees

Parameterized Behavior Trees

ADAPT:	Agent	Development	 and	Prototyping	 Testbed.	Alexander	Shoulson,	 Nathan	Marhsak,	Mubbasir	Kapadia,	
Norman	I.	Badler.	ACM	SIGGRAPH	Interactive	3D	Graphics	 and	Games	(I3D),	2013

5/9/17

11

5/9/17

12

Story World Building

• Wide ruled: A friendly interface to author-goal based story
generation [Skorupski et al. 2007]

• Towards an accessible interface for story world building.
[Poulakos et al. 2015, presented at INT8]
– Preliminary work
– Lacking Affordance creation, bi-directionality, and interface

improvements

5/9/17

13

New Story World

• Unity 3D Project
• Include CANVAS and SWB
• Create a Scene

5/9/17

14

5/9/17

15

5/9/17

16

5/9/17

17

5/9/17

18

5/9/17

19

5/9/17

20

5/9/17

21

5/9/17

22

Evaluation (Method)

• Part 1: Introduction Video
• Part 2: Extend story world and author story
• Part 3: Extend story world to utilize planning
• Part 4: Usability Questionnaire

5/9/17

23

Evaluation Results

• All subject successfully
– Created Haunted Castle Story World
– Authored Stories

• System Usability Survey (SUS)
– Demonstrated usable system (score: 66.88)

Evaluation of Subcomponents

1

2

3

4

5

SWB System State Editor Smart Object Editor Affordance / Event
Editors

CANVAS System

Q1

Q2

Q1:	I	thought	 the	[column	label] was	easy	to	use.

Q2:	I	think	 that	I	would	need	the	support	of	a	technical	person	 to	be	
able	to	use	this	[column	label]

5/9/17

24

Observations on design principles

1.00

2.00

3.00

4.00

5.00

Bi-directionality Reuse Automation

Reported	benefit	of	[column	label]

animated

5/9/17

25

Requirements

Accessibility	

Expressivity	

Collaboration

Requirements

Visual	Storyboards

Expressivity	

Collaboration

5/9/17

26

Requirements

Visual	Storyboards

Computer-Assisted	Story	Authoring

Collaboration

Solutions

CANVAS

An	Event	Centric	Approach	to	Authoring	Stories	in	Crowds.	
Mubbasir	Kapadia,	Alexander	Shoulson,	Cyril	Steimer,	Samuel	
Oberholzer,	Robert	W.	Sumner,	Markus	Gross.	ACM	SIGGRAPH	
Motion	in	Games	2016.	

CANVAS:	Computer-Assisted	Narrative	Animation	Synthesis.	
Mubbasir	Kapadia,	Seth	Frey,	Alexander	Shoulson,	Robert	W.	
Sumner,	Markus	Gross.	ACM	SIGGRAPH/Eurographics Symposium	
on	Computer	Animation,	2016.		

5/9/17

27

5/9/17

28

5/9/17

29

5/9/17

30

5/9/17

31

5/9/17

32

5/9/17

33

5/9/17

34

Problem Definition

5/9/17

35

Author Constraints

Story Completeness

5/9/17

36

Story Consistency

Terminology
• Parameter Bindings

• Ordering Constraints

• Causal Links

• Threats

• Partial Plan

5/9/17

37

Terminology
• Parameter Bindings

• Ordering Constraints

• Causal Links

• Threats

• Partial Plan

Terminology
• Parameter Bindings

• Ordering Constraints

• Causal Links

• Threats

• Partial Plan

5/9/17

38

Terminology
• Parameter Bindings

• Ordering Constraints

• Causal Links

• Threats

• Partial Plan

Terminology
• Parameter Bindings

• Ordering Constraints

• Causal Links

• Threats

• Partial Plan

5/9/17

39

Terminology
• Parameter Bindings

• Ordering Constraints

• Causal Links

• Threats

• Partial Plan

Problem Definition

5/9/17

40

5/9/17

41

5/9/17

42

Overview
Initialization
Parameter Bindings
Termination Condition
Open Precondition Selection
Parameter Binding Selection
Event Instance Selection
Causal Link Protection
Recursive Invocation
Linearization

Overview
Initialization
Parameter Bindings
Termination Condition
Open Precondition Selection
Parameter Binding Selection
Event Instance Selection
Causal Link Protection
Recursive Invocation
Linearization

5/9/17

43

Overview
Initialization
Parameter Bindings
Termination Condition
Open Precondition Selection
Parameter Binding Selection
Event Instance Selection
Causal Link Protection
Recursive Invocation
Linearization

Overview
Initialization
Parameter Bindings
Termination Condition
Open Precondition Selection
Parameter Binding Selection
Event Instance Selection
Causal Link Protection
Recursive Invocation
Linearization

5/9/17

44

Overview
Initialization
Parameter Bindings
Termination Condition
Open Precondition Selection
Parameter Binding Selection
Event Instance Selection
Causal Link Protection
Recursive Invocation
Linearization

Overview
Initialization
Parameter Bindings
Termination Condition
Open Precondition Selection
Parameter Binding Selection
Event Instance Selection
Causal Link Protection
Recursive Invocation
Linearization

5/9/17

45

Overview
Initialization
Parameter Bindings
Termination Condition
Open Precondition Selection
Parameter Binding Selection
Event Instance Selection
Causal Link Protection
Recursive Invocation
Linearization

Overview
Initialization
Parameter Bindings
Termination Condition
Open Precondition Selection
Parameter Binding Selection
Event Instance Selection
Causal Link Protection
Recursive Invocation
Linearization

5/9/17

46

Overview
Initialization
Parameter Bindings
Termination Condition
Open Precondition Selection
Parameter Binding Selection
Event Instance Selection
Causal Link Protection
Recursive Invocation
Linearization

Overview
Initialization
Parameter Bindings
Termination Condition
Open Precondition Selection
Parameter Binding Selection
Event Instance Selection
Causal Link Protection
Recursive Invocation
Linearization

5/9/17

47

Overview
Initialization
Parameter Bindings
Termination Condition
Open Precondition Selection
Parameter Binding Selection
Event Instance Selection
Causal Link Protection
Recursive Invocation
Linearization

Overview
Initialization
Parameter Bindings
Termination Condition
Open Precondition Selection
Parameter Binding Selection
Event Instance Selection
Causal Link Protection
Recursive Invocation
Linearization

5/9/17

48

Overview
Initialization
Parameter Bindings
Termination Condition
Open Precondition Selection
Parameter Binding Selection
Event Instance Selection
Causal Link Protection
Recursive Invocation
Linearization

5/9/17

49

Requirements

Visual	Storyboards

Computer-Assisted	Story	Authoring

Collaboration

5/9/17

50

Requirements

Visual	Storyboards

Computer-Assisted	Story	Authoring

Story	Version	Control

5/9/17

51

Requirements

Emergent	Stories

Freeform	Interactive	Narratives

Solutions
Computer-Assisted	Authoring	of	

Interactive	Narratives

Computer-Assisted Authoring of Interactive Narratives.
Mubbasir Kapadia, Jessica Falk, Fabio Zund, Marcel Marti, Robert
W. Sumner, Markus Gross. ACM SIGGRAPH Interactive 3D
Graphics and Games (I3D),2015.

Evaluating the Authoring Complexity of Interactive Narratives
with Interactive Behavior Trees. Mubbasir Kapadia, Jessica Falk,
Fabio Zund, Marcel Marti, Robert W. Sumner, Markus Gross.
Foundations ofDigitalGames (FDG), 2015.

5/9/17

52

Requirements
• Modular Story Definition

• Free-form User Interactions

• Persistent Stories

Requirements
• Modular Story Definition

• Free-form User Interactions

• Persistent Stories

5/9/17

53

Requirements
• Modular Story Definition

• Free-form User Interactions

• Persistent Stories

Requirements
• Modular Story Definition

• Free-form User Interactions

• Persistent Stories

5/9/17

54

Manual Approaches
• Scripted Approaches [Loyall 1997; Mateas 2002]

• Rule-based Systems [Perlin and Goldberg 1996; Menou 2001]

• Façade [Mateas and Stern 2003, 2004; Dow et al. 2006]

• Dialogue Trees [Prakken and Sartor 1997]

• Story Graphs [Gordon et al. 2004]

• Behavior Trees [Hecker et al. 2007; Isla 2008; Shoulson et al. 2011; Millington and
Funge 2008]

Automated Approaches
• Domain-Independent Planners [Fikes and Nilsson

1971; Sacerdoti 1975]

• Narrative generation systems [Riedl et al. 2003,
Riedl and Young 2006]

• Virtual Directors & Drama Managers [Magerko et
al. 2004, Riedl et al. 2008, Shoulson et al. 2013]

5/9/17

55

Story Graphs

h1

u1

Fail

Succ

,h2

h3

h4

h5

h6 h7

u2
u3

u6

u5

u4

5/9/17

56

Story Graphs

h1

u1

Fail

Succ

,h2

h3

h4

h5

h6 h7

u2
u3

u6

u5

u4

• Modular Story Definition

• Free-form User
Interactions

• Persistent Stories

5/9/17

57

Behavior Trees

ADAPT:	Agent	Development	 and	Prototyping	 Testbed.	Alexander	Shoulson,	 Nathan	Marhsak,	Mubbasir	Kapadia,	
Norman	I.	Badler.	IEEE	Transactions	on	Visualization	 and	Computer	Graphics	 (TVCG),	2014.	

5/9/17

58

Behavior Trees
• Modular Story Definition

• Free-form User Interactions

• Persistent Stories

ADAPT:	Agent	Development	 and	Prototyping	 Testbed.	Alexander	Shoulson,	 Nathan	Marhsak,	Mubbasir	Kapadia,	
Norman	I.	Badler.	IEEE	Transactions	on	Visualization	 and	Computer	Graphics	 (TVCG),	2014.	

Behavior Trees
• Modular Story Definition

• Free-form User
Interactions

• Persistent Stories
MonitorTap(input)

ThrowBall

PickUpBall

 Sequence (AND)

NaiveUserInteraction(a1: Actor, a2: Actor, input: InputSignal)

Loop

(until success)

 Sequence (AND)
a1

MonitorUserInput

PlayBall(a1, a2)

MonitorUserInputMonitorUserInput

ADAPT:	Agent	Development	 and	Prototyping	 Testbed.	Alexander	Shoulson,	 Nathan	Marhsak,	Mubbasir	Kapadia,	
Norman	I.	Badler.	IEEE	Transactions	on	Visualization	 and	Computer	Graphics	 (TVCG),	2014.	

5/9/17

59

Behavior Trees
• Modular Story Definition

• Free-form User
Interactions

• Persistent Stories

ADAPT:	Agent	Development	 and	Prototyping	 Testbed.	Alexander	Shoulson,	 Nathan	Marhsak,	Mubbasir	Kapadia,	
Norman	I.	Badler.	IEEE	Transactions	on	Visualization	 and	Computer	Graphics	 (TVCG),	2014.	

"""

5/9/17

60

"""

Interactive Behavior Trees (IBT’s)

5/9/17

61

"""

5/9/17

62

"""

5/9/17

63

Interactive Behavior Trees (IBT’s)

5/9/17

64

"""

5/9/17

65

How can we systematically evaluate the authoring
complexity of interactive narratives?

How can we systematically evaluate the authoring
complexity of interactive narratives?

Cyclomatic Complexity

5/9/17

66

How can we systematically evaluate the authoring
complexity of interactive narratives?

Cyclomatic Complexity

How can we systematically evaluate the authoring
complexity of interactive narratives?

Cyclomatic Complexity

5/9/17

67

Story Graphs

Story Graphs

5/9/17

68

Story Graphs

Story Graphs

5/9/17

69

Story Graphs

5/9/17

70

5/9/17

71

5/9/17

72

Interactive Behavior Trees

"""

5/9/17

73

Interactive Behavior Trees

"""

Interactive Behavior Trees

"""

5/9/17

74

Interactive Behavior Trees

"""

Interactive Behavior Trees

"""

5/9/17

75

Cyclomatic Complexity

"""

Cyclomatic Complexity

"""

5/9/17

76

Cyclomatic Complexity

"""

5/9/17

77

User Study
• 12 subjects
– 6 Experts, 6 Novices

• Task: Author same story using Story Graphs
and IBT’s in random order

Metrics
• Independent Variables
– Authoring Method (Story Graphs, IBT’s)
– Authoring Proficiency (Expert, Novice)

• Dependent Variables
– Time to author (minutes)
– Authoring effort (number of mouse clicks)
– Subjective difficulty (5 point Likert scale)

5/9/17

78

MANOVA Results
Statistically significant difference in user
performance based on authoring method
Roy’s Largest Root = 6.282, F(3,17) = 35.587, p < 0.001, partial η2 = 0.863

Statistically significant difference in user
performance based Proficiency
Roy’s Largest Root = 5.525, F(3,17) = 31.309, p < 0.001, partial η2 = 0.847

User Study – ANOVA Results

5/9/17

79

Discussion
• Interactive Behavior Trees: facilitate modular authoring of interactive

narratives

• Story graphs: used as a baseline for comparison
– Comprehensive coverage with other representations across story types is

important to understand benefits and tradeoffs

• Cyclomatic Complexity: a suitable static indicator of authoring complexity
– Complementary to existing measures [Chen et al. 2009] that account for high-

level story structure

• Preliminary User study: IBT’s reduce authoring time and effort
– Extend scope to more users and more complex narratives

Additional Challenges
• Inconsistent Stories

• Conflicting User Actions

• User Inactions

• Incomplete Stories

5/9/17

80

Partial-Order Planning
• Problem Formulation

• Partial Plan

• POP

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

Partial-Order Planning
• Problem Formulation

• Partial Plan

• POP

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

5/9/17

81

Partial-Order Planning
• Problem Formulation

• Partial Plan

• POP

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

Partial-Order Planning
• Problem Formulation

• Partial Plan

• POP

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

5/9/17

82

Partial-Order Planning
• Problem Formulation

• Partial Plan

• POP

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

Partial-Order Planning
• Problem Formulation

• Partial Plan

• POP

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

5/9/17

83

Partial-Order Planning
• Problem Formulation

• Partial Plan

• POP

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

Partial-Order Planning
• Problem Formulation

• Partial Plan

• POP

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

:

5/9/17

84

Partial-Order Planning
• Problem Formulation

• Partial Plan

• POP

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

[Sacerdoti 1975]

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

• Initialization

• Open Precondition Selection

• Precondition Resolution

• Causal Link Protection

• Plan Completion

5/9/17

85

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

• Initialization

• Open Precondition Selection

• Precondition Resolution

• Causal Link Protection

• Plan Completion

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

• Initialization

• Open Precondition
Selection

• Precondition Resolution

• Causal Link Protection

• Plan Completion

5/9/17

86

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

• Initialization

• Open Precondition Selection

• Precondition Resolution

• Causal Link Protection

• Plan Completion

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

• Initialization

• Open Precondition Selection

• Precondition Resolution

• Causal Link Protection

• Plan Completion

5/9/17

87

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

• Initialization

• Open Precondition Selection

• Precondition Resolution

• Causal Link Protection

• Plan Completion

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

• Initialization

• Open Precondition Selection

• Precondition Resolution

• Causal Link Protection

• Plan Completion

5/9/17

88

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

• Initialization

• Open Precondition Selection

• Precondition Resolution

• Causal Link Protection

• Plan Completion

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

• Initialization

• Open Precondition Selection

• Precondition Resolution

• Causal Link Protection

• Plan Completion

5/9/17

89

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

• Initialization

• Open Precondition Selection

• Precondition Resolution

• Causal Link Protection

• Plan Completion

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

• Initialization

• Open Precondition Selection

• Precondition Resolution

• Causal Link Protection

• Plan Completion

5/9/17

90

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = hs0,�g

,Ai consisting of an initial state s0,
a set of preconditions to satisfy the goal state �

g

, and the set of af-
fordance instances A = {h

i

} which may include instances of user
interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. Causal links symbolize a connection between two
affordance instances. They are represented as l = hh1,�

i

2,h2i. �i

2

defines the ith condition in �2 such that �i

2(⌦1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan ⇡ = hH,�

open

,L,Oi where H is
the set of affordance instances currently in ⇡, �

open

is a set of pairs
�
open

= hh,�hi where h 2 H and �h defines one condition in
the precondition expression �h . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{h

i

� h
j

} representing a “before” relation, where h
i

,h
j

2 H.
This means that h

i

must occur before h
j

in the partial order plan.
A partial plan ⇡p is a plan that has not yet satisfied all open pre-
conditions: |�

open

| > 0, while a complete plan ⇡c has no open
preconditions: �

open

= ;.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan ⇡c = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions �

g

. While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure
a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance exceution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of POP, as applied
to our problem domain below and refer the readers to [Sacerdoti
1975] for additional details.

Alg. (1) outlines the details of the algorithm. At each iteration,
POP selects �

open

= hh
i

,�
i

i from �
open

and chooses an affor-
dance instance h

j

2 A which satisfies �
i

. If h
j

is not already
present, it is inserted into ⇡p. h

j

must execute before h
i

which is
specified by adding a causal link l = hh

j

,�
i

,h
i

i. Any instance
h 2 H that contradicts �

i

must happen either before h
j

or after
h
i

, and is resolved by the method Protect. If h
j

is a new action, its
preconditions are added to �

open

, and the process continues until
�

open

= ;.

Integrating Plan into IBT. The plan ⇡c generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 5 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story

Algorithm 1 Partial Order Planner

function Plan (P = hs0,�g

,Ai)
�

open

= {hh�
g

,�i| 8� 2 �
g

}

H = {hs0 ,h�
g

}

O = {hs0 � h�
g

}

L = ;

while �
open

6= ; do
hh

c

,�
c

i = SelectAndRemoveCondition(�
open

)
if �

c

(h) = FALSE 8 h 2 H then
h
s

= 9h 2 A s.t. �
c

(h) = TRUE
H = H [h

s

O = O [(hs0 � h
s

)
for all l 2 L do

O = Protect(l,h
s

,O)
�

open

= �
open

[{hh
s

,�
s

i| 8 �
s

2 �
s

}

else
h = 9 h 2 H s.t. �(h) = TRUE

O = O [(h
s

� h
c

)
L = L [hh

s

,�
c

,h
c

i

for all h 2 H do
O = Protect(hh

s

,�
c

,h
c

i,h,O)
⇡ = hH,�

open

,L,Oi

return ⇡

author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance h

t

associated with t such that �
t

(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the
execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · s

n

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can deter-
mine whether the preconditions of an affordance instance might be
violated by any possible execution of the story arc. The supplemen-
tary document (XX) details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s , we define a problem instance P = hs ,�t,Ai and
generate a plan ⇡ to add additional nodes in the tree such that �t are
satisfied. Alg. (2) outlines the algorithm for inconsistency detection
and resolution.

4.4 Conflicts

§ 4.3 provides tools to ensure that narratives authored by the user are
consistent. However, the actions of the user may still invalidate the
successful execution of a consistent narrative, and the author must
consider the ramifications of all possible interactions at all possi-
ble points in the narrative definition. In order to make this problem
tractable, we present automation tools that automatically detect po-
tential user interactions that may invalidate affordance precondi-
tions at any stage in the narrative, and provide resolution strategies

• Initialization

• Open Precondition Selection

• Precondition Resolution

• Causal Link Protection

• Plan Completion

PlanToBT(bear1: Actor, bear2: Actor, ball: Ball)

Enter PickUp(bear1)

bear2 ball

... Give(bear2)

bear1

A

Plan Integration
Enter(bear2)

Pickup(ball, bear1)

Give(bear1, bear2, ball))Start State

nInScene(bear2) InScene(bear2)

nHolds(ball, bear2)

nHolds(ball, bear1)

a nIsAttached(ball)

a InScene(bear1)

a InScene(ball)

InScene(bear1)

a Holds(ball, bear1)

Start State: nHolds(ball, bear) a InScene(bear1) a InScene(ball)

 a nHolds(ball, bear2) a nIsAttached(ball) a nInScene(bear2)

Goal State: Holds(ball, bear1) a InScene(bear1)

 a nHolds(ball, Bear2) a InScene(bear2)

¬

¬

¬

¬
¬

¬

¬¬

¬
∧∧

∧
∧

∧
∧

∧
∧∧

∧ ∧
∧

5/9/17

91

Additional Challenges
• Inconsistent Stories

• Conflicting User Actions

• User Inactions

• Incomplete Stories

Enter(bear2)

Pickup(ball, bear1)

Give(bear1, bear2, ball))Start State

nInScene(bear2) InScene(bear2)

nHolds(ball, bear2)

nHolds(ball, bear1)
a nIsAttached(ball)
a InScene(bear1)
a InScene(ball)

InScene(bear1)
a Holds(ball, bear1)

Start State: nHolds(ball, bear) a InScene(bear1) a InScene(ball)
 a nHolds(ball, bear2) a nIsAttached(ball) a nInScene(bear2)

Goal State: Holds(ball, bear1) a InScene(bear1)
 a nHolds(ball, Bear2) a InScene(bear2)

¬

¬

¬

¬

¬

¬

¬

¬

¬

^

^

^

^

^

^

^

^

^

^ ^

^

(a) (b)

Figure 5: (a) Illustrates a sample plan constructed by POP. The edges represent the causal links between the different affordances. (b) A
concrete mapping of the plan to a BT.

Algorithm 2 Inconsistency Detection Resolution

function DetectAndResolveInconsistencies (tIBT)
for all tarc 2 tnarr do

for all t 2 tarc do
b = ComputeBeliefState(t, tIBT)
for all s 2 b do

if �t(s) == FALSE then
P = hs ,�t,Ai

⇡ = Plan(P)
tIBT = IntegratePlan(⇡, t, tIBT)

return b

to accommodate user interference, while still ensuring that the nar-
rative is able to proceed down the intended path.

Conflicts. Before we define a conflict, we first differentiate be-
tween two sets of causal links. A link l = hh1,�

i

2,h2i is active
if the affordance instance ht associated with the current node t has
the following ordering: h1 � ht � h2. A link is needed to ensure
the progression of the narrative at a particular node t in the IBT if
h1 � ht � h2.

This allows us to formally define a conflict c as a pair hu, li where
l = hh

i

,�i

j

,h
j

i is an active causal link, such that if the user per-
forms a particular interaction u 2 U during the execution of h

i

,
�i

j

may be violated. Conflicts are detected at a particular node t
if any active causal links at t are violated and can be resolved by
generating a plan that satisfies the conditions of all needed links.
Conflicts can be handled in two ways: (1) Accommodation. We
allow the user to interfere with the narrative by successfully execut-
ing u such that h fails. In this case, we need to generate a conflict
resolution strategy that is able to accomplish the same result, as
executing h. (2) Interference. The affordance instance h is suc-
cessfully executed and u fails. No plan is needed in this case. It is
up to the author to decide whether to accommodate or interfere for
a particular conflict. For conflicts where no plan is possible, we are
limited to interference where the user interaction is perceived to be
unsuccessful.

It is up to the author to decide whether to accommodate or inter-
fere for a particular conflict. For conflicts where no plan is gen-
erated, we are limited to interference where the user interaction is
perceived to be unsuccessful. Note that the static analysis of the
IBT is unable to detect all possible conflicts that may occur during

an IBT execution. Also, conflicts may occur within plans generated
to accommodate conflicts in the original story definition. For these
two cases, we can either adopt interference where the interaction
fails or dynamically resolve conflicts during the narrative execu-
tion.

Conflict Resolution Subtree. tcr is an automatically populated
subtree in the IBT tIBT which contains the conflict resolution
strategies (plans) for all potential conflicts. During narrative exe-
cution, whenever a conflict occurs, control is transferred to the cor-
responding subtree in tcr which contains the plan for resolving that
particular conflict.

Conflict Detection and Resolution. Alg. (3) provides algorithmic
details of detecting and resolving conflicts at a particular node t
in the IBT tIBT. We check if any interaction violates the active
links at that node. For a potential conflict c = hu, li, we consider
the belief state b up to the execution of the current node t in the
IBT. For each state s 2 b, we define a problem instance P =
hs0 = ⌦

u

(s),�
g

= �neededi, where �needed are the combined
conditions of all needed links. A plan ⇡ is generated for P and
inserted into the conflict resolution subtree tcr to accommodate u.
If no plan is found, then we choose to interfere where u is said to
fail. description loop is oppo of algo

Algorithm 3 Conflict Detection and Resolution
function DetectAndResolveConflicts (t,L, tIBT)
b = ComputeBeliefState(t, tIBT)
for all s 2 b do

�active = ;

�needed = ;

for all l = hh
i

,�
j

,h
j

i 2 L do
if (h

i

� ht ^ ht � h
j

) == TRUE then
�active = �active [�

j

if (h
i

� ht ^ ht � h
j

) == TRUE then
�needed = �needed [�

j

for all u 2 U do
if ⌦

u

(�active) == FALSE then
P = h⌦

u

(s),�neededi

⇡ = GeneratePlan (P)
if ⇡ 6= ; then

Accommodate(tcr, t, u,⇡)
else

Interfere(tcr, t, u)

5/9/17

92

5/9/17

93

Additional Challenges
• Inconsistent Stories

• Conflicting User Actions

• User Inactions

• Incomplete Stories

Challenges
• Inconsistent Stories

• Conflicting User Actions

• User Inactions

• Incomplete Stories

Accommodation

Interference

5/9/17

94

Enter(bear2)

Pickup(ball, bear1)

Give(bear1, bear2, ball))Start State

nInScene(bear2) InScene(bear2)

nHolds(ball, bear2)

nHolds(ball, bear1)
a nIsAttached(ball)
a InScene(bear1)
a InScene(ball)

InScene(bear1)
a Holds(ball, bear1)

Start State: nHolds(ball, bear) a InScene(bear1) a InScene(ball)
 a nHolds(ball, bear2) a nIsAttached(ball) a nInScene(bear2)

Goal State: Holds(ball, bear1) a InScene(bear1)
 a nHolds(ball, Bear2) a InScene(bear2)

¬

¬

¬

¬

¬

¬

¬

¬

¬

^

^

^

^

^

^

^

^

^

^ ^

^

(a) (b)

Figure 5: (a) Illustrates a sample plan constructed by POP. The edges represent the causal links between the different affordances. (b) A
concrete mapping of the plan to a BT.

Algorithm 2 Inconsistency Detection Resolution

function DetectAndResolveInconsistencies (tIBT)
for all tarc 2 tnarr do

for all t 2 tarc do
b = ComputeBeliefState(t, tIBT)
for all s 2 b do

if �t(s) == FALSE then
P = hs ,�t,Ai

⇡ = Plan(P)
tIBT = IntegratePlan(⇡, t, tIBT)

return b

to accommodate user interference, while still ensuring that the nar-
rative is able to proceed down the intended path.

Conflicts. Before we define a conflict, we first differentiate be-
tween two sets of causal links. A link l = hh1,�

i

2,h2i is active
if the affordance instance ht associated with the current node t has
the following ordering: h1 � ht � h2. A link is needed to ensure
the progression of the narrative at a particular node t in the IBT if
h1 � ht � h2.

This allows us to formally define a conflict c as a pair hu, li where
l = hh

i

,�i

j

,h
j

i is an active causal link, such that if the user per-
forms a particular interaction u 2 U during the execution of h

i

,
�i

j

may be violated. Conflicts are detected at a particular node t
if any active causal links at t are violated and can be resolved by
generating a plan that satisfies the conditions of all needed links.
Conflicts can be handled in two ways: (1) Accommodation. We
allow the user to interfere with the narrative by successfully execut-
ing u such that h fails. In this case, we need to generate a conflict
resolution strategy that is able to accomplish the same result, as
executing h. (2) Interference. The affordance instance h is suc-
cessfully executed and u fails. No plan is needed in this case. It is
up to the author to decide whether to accommodate or interfere for
a particular conflict. For conflicts where no plan is possible, we are
limited to interference where the user interaction is perceived to be
unsuccessful.

It is up to the author to decide whether to accommodate or inter-
fere for a particular conflict. For conflicts where no plan is gen-
erated, we are limited to interference where the user interaction is
perceived to be unsuccessful. Note that the static analysis of the
IBT is unable to detect all possible conflicts that may occur during

an IBT execution. Also, conflicts may occur within plans generated
to accommodate conflicts in the original story definition. For these
two cases, we can either adopt interference where the interaction
fails or dynamically resolve conflicts during the narrative execu-
tion.

Conflict Resolution Subtree. tcr is an automatically populated
subtree in the IBT tIBT which contains the conflict resolution
strategies (plans) for all potential conflicts. During narrative exe-
cution, whenever a conflict occurs, control is transferred to the cor-
responding subtree in tcr which contains the plan for resolving that
particular conflict.

Conflict Detection and Resolution. Alg. (3) provides algorithmic
details of detecting and resolving conflicts at a particular node t
in the IBT tIBT. We check if any interaction violates the active
links at that node. For a potential conflict c = hu, li, we consider
the belief state b up to the execution of the current node t in the
IBT. For each state s 2 b, we define a problem instance P =
hs0 = ⌦

u

(s),�
g

= �neededi, where �needed are the combined
conditions of all needed links. A plan ⇡ is generated for P and
inserted into the conflict resolution subtree tcr to accommodate u.
If no plan is found, then we choose to interfere where u is said to
fail. description loop is oppo of algo

Algorithm 3 Conflict Detection and Resolution
function DetectAndResolveConflicts (t,L, tIBT)
b = ComputeBeliefState(t, tIBT)
for all s 2 b do

�active = ;

�needed = ;

for all l = hh
i

,�
j

,h
j

i 2 L do
if (h

i

� ht ^ ht � h
j

) == TRUE then
�active = �active [�

j

if (h
i

� ht ^ ht � h
j

) == TRUE then
�needed = �needed [�

j

for all u 2 U do
if ⌦

u

(�active) == FALSE then
P = h⌦

u

(s),�neededi

⇡ = GeneratePlan (P)
if ⇡ 6= ; then

Accommodate(tcr, t, u,⇡)
else

Interfere(tcr, t, u)

"""

5/9/17

95

"""

5/9/17

96

Additional Challenges
• Inconsistent Stories

• Conflicting User Actions

• User Inactions

• Incomplete Stories

5/9/17

97

User Inaction

5/9/17

98

Additional Challenges
• Inconsistent Stories

• Conflicting User Actions

• User Inactions

• Incomplete Stories

5/9/17

99

5/9/17

100

CANVAS:	 Computer-Assisted	 Narrative	 Animation	 Synthesis.	Mubbasir	Kapadia,	Seth	Frey,	 Alexander	 Shoulson,	Robert	
W.	Sumner,	 Markus	Gross.	ACM	SIGGRAPH	Symposium	on	Computer	Animation	(SCA)	2016.

Evaluating	Accessible	 Graphical	Interfaces	 for	Building	Story	 Worlds.	S	Poulakos,	M	Kapadia,	 GM	Maiga,	F	Zünd,	M	
Gross,	RW	Sumner,	 Interactive	Storytelling:	 9th	International	Conference	on	Interactive Digital	Storytelling,	 2016

An	event-centric	 approach	to	authoring	stories	 in	crowds.	M	Kapadia,	 A	Shoulson,	C	Steimer,	 S	Oberholzer,	 RW	Sumner,	
M	Gross,	ACM	SIGGRAPH	Conference	on	Motion	in	Games,	15-24

Towards	an	Accessible	 Interface	 for	Story	 World	Building,	 S	Poulakos,	M	Kapadia,	A	Schüpfer,	F	Zünd,	RW	Sumner,	M	
Gross.	Eleventh	Artificial	 Intelligence	 and	Interactive	Digital	Entertainment,	 2015

Computer-Assisted	Authoring	 of	Interactive	 Narratives.	 Mubbasir	Kapadia,	 Jessica	Falk,	 Fabio	Zund,	Marcel	Marti,	
Robert	W.	Sumner,	 Markus	Gross.	ACM	SIGGRAPH	 Interactive	3D	Graphics	and	Games	(I3D),	2015.

Augmented	 creativity:	 bridging	 the	 real	and	virtual	worlds	to	enhance	creative	 play.	F	Zünd,	M	Ryffel,	S	Magnenat,	 A	
Marra,	 M	Nitti,	M	Kapadia,	G	Noris.	ACM	SIGGRAPH	Asia	2015	Mobile	Graphics	and	Interactive	Applications,	2016

Evaluating	 the	Authoring	Complexity	 of	Interactive	 Narratives	 with	 Interactive	 Behavior	 Trees.	Mubbasir	Kapadia,	
Jessica	Falk,	Fabio	Zund,	Marcel	Marti,	 Robert	W.	Sumner,	 Markus	Gross.	Foundations	of	Digital	Games	(FDG),	2015.

Thank	You!

	paper
	slides_v2

