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Figure 1: Pointing animation. The original animation (on left) and resulting variations generated by ourmethod. The trajectory
deformation is visualized with a time varying line color from light to dark over the animation sequence duration.

ABSTRACT
This work addresses the development of a character animation
editing method that accommodates animation changes while pre-
serving the animator’s original artistic intent. Our goal is to give
the artist control over the automatic editing of animations by ex-
tending them with artist-defined metadata. We propose a metadata
representation that describes which aspects of an animation can be
varied. To make the authoring process easier, we have developed
an interface for specifying the metadata. Our method extracts a
collection of trajectories of both effectors and objects for the ani-
mation. We approximate and parameterize the trajectories with a
series of cubic Bézier curves. Then, we generate a set of high-level
parameters for editing which are related to trajectory deformations.
The only possible deformations are those that preserve the fine
structure of the original motion. From the trajectories, we use in-
verse kinematics to generate a new animation that conforms to the
user’s edits while preserving the overall character of the original.

CCS CONCEPTS
• Computing methodologies→ Animation;Motion process-
ing; Graphics systems and interfaces.
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1 INTRODUCTION
Through subtle variations in motion, talented animators bring digi-
tal characters to life. Expressive character animation gives digital
characters identity, mood, and personality. However, creating this
expressive motion has always been a challenging task. In order
to achieve the highest quality result, animators most often uti-
lize keyframing tools, since it allows them to carefully craft and
control all aspects of a character’s movement. In this process, an-
imators carefully construct the pose of digital characters at key
points in the animation, which are interpolated by the animation
software. Generating these key poses, achieving the appropriate
timing [Whitaker and Halas 2013], and effectively incorporating
the principles of animation [Johnston and Thomas 1981] is a time
consuming and costly process. Unfortunately, once the investment
has been made in creating an initial animation, few tools exist to
reuse that investment on similar animation tasks.

We address this situation by developing a parameterization of
humanoid animation with intent-preserving editing. Our work
forms the basis of an animation modification solution that can
make animation adjustment more efficient and enhance real-time
applications like games that require run-time animation edits. It is
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especially appropriate for adapting animations that involve object
interaction. Our solution allows the digital artist to participate
actively in the editing process by extending animations with artist-
defined metadata. We explore the notion that the artistic intent is
encoded in the spatiotemporal trajectories of both effectors, such
as hands, and scene objects. The state of these elements over time
is represented through events occurring along the animation’s time
frame. Thus, as part of the animation process, the animator creates
metadata using a custom interface to indicate which effectors and
which objects can be adjusted, as well as at which times during the
animation timeline these adjustments are possible.

The animation modification system stores the relevant trajecto-
ries over time of all metadata elements. Internally, the trajectories
are represented by cubic Bézier splines. The purpose of this repre-
sentation is to help deform the trajectories while preserving the
fine structure of the motion. Finally, we use the modified trajectory
points as the targets of an inverse kinematics system to compute
the character pose at each frame of the animation. Our method can
generate different variations of the same animation that preserve
the original intent of the artist. We demonstrate results showing
various animation adjustments such as pointing, grabbing, pouring,
and sitting that preserve the overall style of the original animation.

2 RELATEDWORK
The creation of stylised motion remains an important challenge in
animation. In particular, human motion frequently portrays physi-
cal and emotional traits of the character. However, the term ‘style’
has been defined in a wide variety of ways, and its meaning and
scope depend on the judgement of the proposer. Hsu et al. [2005]
describe style as variations in the execution of the same action,
such as walking and running. Later, Min et al. [2010] incorporate
emotion into the definition, differentiating between a neutral, sad
or angry walk. They delve deeper into the difference between style
and identity, determined by how a specific character performs an
action. For example, an adult walks differently than a child. How-
ever, more often than not, we find that emotion and identity are
included in the definition of style [Aristidou et al. 2017; Shapiro
et al. 2006]. This is because stylistic variations are very subtle and
often coupled in the motion data, which makes it difficult to make
a distinction between them. In our work, we focus on artistic intent
rather than style, which covers all of these aspects at the same time,
and we explore the notion that it is encoded in the spatiotemporal
trajectories of both effectors and objects.

2.1 Motion Editing
We examine a variety of motion editing methods which aim to
synthesize animations from existing motion data according to par-
ticular requirements. The results are usually short motions similar
to the original data. This excludes a large body of work on motion
synthesis, which is more versatile than motion editing as it can be
used to generate a wider range of motions. The methods presented
here are divided into four main categories: constraint-based, motion
graphs, interpolation-based and statistical-based.

2.1.1 Constraint-Based Motion Editing. Contraint-based editing
is a well-known problem that has been extensively explored. It

consists of modifying a given animation to satisfy a set of con-
straints through the editing of specific keyframes. Constraints can
offer intuitive control over the motion of a character, especially
over the end-effectors. Our method falls into this category, as we
also define constraints in the form of animation metadata. Mo-
tion Warping [1995] is an early work on this topic, where a new
animation is generated from a set of sparse constraints. These corre-
spond to character poses that are defined by the animator at specific
frames. More recently, Shapiro et al. [2007] combine a given motion
with a motion planner to produce a new character animation that
avoids and manipulates objects. Ho et al. [2010] describe the spa-
tial relationship between single or multiple characters, or between
characters and a restricted environment, through a simple structure
called an interaction mesh. This method is adequate for handling
motions in which the spatial relationships between different body
parts of characters are essential for capturing the scene semantics,
such as dancing, fighting or getting into a car. Interaction meshes
can be used to preserve the spatial relationships and reduce inap-
propriate interpenetrations, however, they are not applicable for
preserving artistic intent or character style, because these do not
always relate to spatial relationships between two distinct entities.
In another line of work, Kim et al. [2009] propose high-level editing
of synchronized human motion data by manipulation of spatial
and temporal constraints. First, the constraints are specified in the
form of annotations for each of the motion clips. Then, the authors
employ a one-dimensional version of Laplacian mesh editing to
deform the character trajectories in an as-rigid-as-possible man-
ner. Similarly, we annotate the animations with metadata and we
aim to preserve the underlying structure of the effector and object
trajectories.

There are also sketch-based approaches to motion editing, which
represent the motion constraints with user sketches. Guay et al.
[2015] propose a method for animation design from a single user
sketch. The generated animations can be further refined by provid-
ing new sketches. Motivated by this work, SketchiMo [2016] is a
sketching interface to allow users to modify poses and edit joint
trajectories by sketching curves through the interface.

2.1.2 Motion Graphs. This line of research was opened by Kovar
et al. [2008] who developed a system for generating different styles
of locomotion along user-specified 2D trajectories. The motion
data is divided into fragments corresponding to character poses,
which are then reassembled to create new animations. The major
limitation is that motion data is not actually being modified, and
therefore any generated animation is limited to a combination of
the motions in the database. The approach also requires gathering
a large amount of example data.

2.1.3 Statistical-Based Motion Editing. In this category of methods,
the new motion sequences are generated by applying statistical
and machine learning models. However, they need to construct an
extensive motion database to train the neural networks. Despite
being placed in different categories, there is no absolute boundary
between these and motion graph-based methods, as the latter may
use statistics in a particular step. The same applies to statistical
models. A recent example is presented by Holden et al. [2016]. In
this work, the authors propose a framework to synthesize human
movement and to edit the generated motions on the space of the
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motionmanifold. Users can generate motion variations by inputting
constraints such as the trajectory over terrain for the character
to follow or trajectories for the end-effectors. Their system can
produce high-quality animations with no pre-processing needed.

2.1.4 Interpolation-Based Motion Editing. This is a technique that
extrapolates the new motions through interpolation of a broad set
of example motions. Although this approach has been successfully
demonstrated, it is significantly limited by the number of exam-
ple animations. Rose et al. [1998] proposed to interpolate a set of
annotated example motions by using radial basis functions. Later,
this work is extended to be used in inverse kinematics problems
[Rose III et al. 2001]. Kovar and Gleicher [2004] control the interpo-
lation process by using weighted interpolation functions. In their
work, they give the user control over a set of properties of the
generated motions, such as end-effector locations or joint velocities.
More recently, Huang and Kallmann [2010] use direct optimization
to precisely satisfy spatial constraints in real time. Their work is
demonstrated for both walking and upper-body actions, such as
pointing to distant objects and pouring tea. Min et al. [2010] present
a model for editing personalized motion styles, but extend the idea
of modeling both the style and identity of the motion. To construct
the model they use a large corpus of example motions annotated in
terms of identity and style attributes.

2.2 Inverse Kinematics
In humanoid characters, inverse Kinematics (IK) is used to obtain a
single pose given a set of constraints in the form of joint positions
and rotations. The dominant trend in the past years is to use data-
driven techniques that try to take advantage of the large volume
of motion capture data available [Holden et al. 2016; Wei and Chai
2011]. In case there are time limitations, heuristic-based algorithms
can be used for solving the IK problem with a low computational
cost. The most popular heuristic-based algorithms are CCD [1991]
and FABRIK [2011]. A comprehensive overview of inverse kinemat-
ics techniques can be found in [Aristidou et al. 2018].

Although the base IK problem has been well studied, the gen-
erated poses may often appear mechanical or unnatural. Over the
years, there has been a growing effort to create more natural look-
ing results. Grochow et al. [2004] propose a style-based IK that
uses a learned model of human poses to generate the most likely
pose satisfying a given set of constraints. The system can produce
natural-looking results, but those are limited to poses that are close
to the training data. Liu et al. [2005] extend this work by incorpo-
rating elements of locomotion such as gravity or preference for
using certain joints rather than others. Although they demonstrate
the efficacy of their method in style transfer, the system has the
disadvantage of being computationally intensive. Later, Aristidou
et al. [2017] propose a method to control the style of a given motion
by correlating the human poses with emotion. In a more recent
work, Xia et al. [2015] present a data-driven solution to generate
stylized motions from plain, non-stylized motion data in real-time.

In our work, the choice of IK solver plays an important role in
the quality of the results. We use an extension of FABRIK [2011]
for biped characters. We chose this solver for its low computational
cost, which makes it significantly faster than other methods, and

allows us to achieve an immediate set up of the system by still
achieving reasonable human poses.

2.3 Animation in Games
In the game industry, creating compelling animation for game
characters is an essential part of the development process. Although
there has been extensive research on human motion editing, the
standard is to generate massive animation libraries and to enforce
strict metrics on the environment. Animation editing comes down
to procedural post-processing of the animation data and the extent
to which animations are modified after their creation is relatively
small. If the results are not satisfactory, solutions involve either
going back and editing the animation data or solving the issue in the
post-processing layer [Dowsett andHarrower 2015; Laidacker 2013].
IK Rig [Bereznyak 2016], as one of the most advanced animation
technologies in the game industry, is designed to transfer animation
data between rigs of both different sizes and skeletal hierarchies,
as well as amending the animations to represent the size or weight
of the rig.

2.4 Learning from Demonstration
Learning from Demonstration (LfD) is a technique used on robotic
applications to teach robots how to correctly execute a specific
behavior through a demonstration. The first step is to obtain the
examples from the teacher. A relevant approach is to record the ro-
bot trajectory during the demonstration [Bagnell et al. 2007; Ratliff
et al. 2006]. Then, a common strategy to generate new behaviors
is to include teacher annotations. Similarly, Nicolescu and Mataric
[2003] present a method that allows the teacher to provide verbal
instructions and informative cues beyond the demonstration ex-
perience. Finally, van Lent et al. [2001] propose to annotate traces
with the times at which goals are achieved or abandoned. A com-
prehensive survey of the existing techniques in LfD can be found
in [Argall et al. 2009].

In summary, LfD shares common aspects with our work, such as
representing behaviors as a set of spatiotemporal trajectories. Ad-
ditionally, the use of artist-generated metadata to define character
operations plays a similar role to teacher annotations.

3 METADATA REPRESENTATION
The task of creating an animated motion should ideally stop after
obtaining the initial animation. However, if we want to re-use the
motion data for a different action, we need to make alterations
to it. There are a number of issues that can make this editing a
challenging task: we have nothing but the original data, there is little
sign of what the key properties of the motion are and - if working
with motion capture data - the artist may not be familiar with the
intent of the original performance. In this section, we propose a
metadata representation that enables artists to specify the important
elements to retain in an animation while performing motion editing.
The metadata defines common animation constraints, as well as
the modifiable elements of the animation, that can be specified at
specific frames. It is independent of the animation technique used
to generate the original motion.
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The proposed metadata representation, including a short de-
scription of each item, is shown in Listing 1. The artist can spec-
ify two categories of editable elements: objects and effectors. The
supported effectors are: pelvis, left/right shoulder, left/right thigh,
left/right hand and left/right foot. The metadata language includes
constraints between elements, including object and end-effector
position and look at, and can be used to identify for each frame
the type of editable elements and the type of edition possible. The
set of constraints at a specific frame is what we call an animation
event. The metadata language can be easily extended as needed to
encode additional data.

{
"objects":[{

"objectName":"The object 's name",
"offsetName":"The offset point from pivot, if any",
"isModifiable":true,
"isReplaceable":true

},
...

],
"effectors":[
{
"effectorName":"The end -effector 's name"

},
...

],
"events":[{

"keyframe":0,
"modifiableEffectors":[
"The name of the first modifiable effector",
"The name of the second modifiable effector",
...

],
"constraints":[{

"constrainedElement":"The constrained element 's name",
"constrainingElement":"The constraining element 's name",

},
...

],
"lookAt":"The name of the element to look at"

}
]

}

Listing 1: Example metadata stored in text-format.

In addition to the above, we developed a Unity plugin for meta-
data authoring (Figure 2). A preview of the selected animation is
shown at the bottom of the window. In the preview area, the user
can playback the animation or select specific frames. The first step
is to specify the parameterizable objects and effectors. Then, the
timeline can be used to specify the animation constraints at spe-
cific frames. Details about the constraints at the selected frame are
displayed under the timeline area.

4 ANIMATION EDITING
Once the metadata for the animation has been authored, the ani-
mation/metadata pair can be used as input to the animation editing
system. Figure 3 shows an overview of the steps involved in the ani-
mation editing process and the relationship between them. The first
goal is to compute the trajectories over time of all parameterizable
elements, which can be both objects and effectors, in the original
animation. To compute such trajectories, we first retrieve the pa-
rameterizable elements from the metadata, and then we sample
the state of the elements at every frame of the original animation.
Then, we generate a set of Bézier splines to approximate each of
the trajectories. The purpose of the splines is to help deform the
trajectories while preserving the structure of the motion. In the
next step, the system will determine a set of parameters to control
the modification, as well as constraints on what should not be mod-
ified during the editing process. Finally, we find a set of poses that

Figure 2: The metadata authoring interface built in Unity
with the pouring tea animation selected.

generate a new animation that meets the requirements provided in
both the metadata and the new trajectories. As a result, the output
of our algorithm is a modified version of the original animation
that preserves its artistic intent.

Animation 
Trajectories

Trajectory 
Approximation

Trajectory 
Parameterization Pose Finding

Animation & 
Metadata

Modified 
Animation

Figure 3: The steps involved in the animation editing pro-
cess. The input is the animation/metadata pair. The output is
a modified version of the original animation that preserves
the original artistic intent.

4.1 Animation Trajectories
Similar to previous animation editing methods, we represent the
animation through spatiotemporal trajectories [Choi et al. 2016;
Kim et al. 2009]. The first step of this process is to retrieve the
parameterizable elements from the metadata. In the metadata, the
parameterizable elements are stored in two lists, based on element
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Figure 4: The trajectory and corresponding spline of the
right hand effector in the pointing animation. The trajec-
tory and the spline are displayed in blue and cyan respec-
tively. The coordinate-system axes of each trajectory point
are displayed in red (x-axis), green (y-axis) and blue (z-axis).

type. The next step is to play back the animation at every frame. For
a frame i , we sample the state of all the parameterizable elements.
Besides, at frame i we compute a rule for the look-at target, which
can be described as a triple parameter < f rom, to,weiдht >. The
weight is uniformly distributed through the frames between the
previous and following events. After sampling the animation, we
have a spatiotemporal trajectory for each of the parameterizable
elements, consisting of the element state at each frame plus a look-at
rule. The trajectory of an effector is shown in Figure 4.

4.2 Trajectory Approximation
The first step is to split the trajectories. Each trajectory is divided
into N − 1 sub-trajectories, where N corresponds to the number of
metadata events. A sub-trajectory contains all the element positions
that are between two consecutive events.

We have a set ofM data points, (M0, . . . ,Mj , . . . ,Mm−1), and we
want to find a cubic Bézier curve that meets the following conditions

(1) The first and last data points (i.e.,M0 andMm−1) must cor-
respond to the curve endings.

(2) Then, the curve must approximate the data polygon using
least squares.

The first step towards this goal is to determine a set of parameters,
(t0, . . . , tj , . . . , tm−1), in the domain [0, 1] to fix the data points at
particular values . Note that there is one t parameter per data point.
There are many parameterization methods, such as uniform, chord
length or centripetal, each with advantages and disadvantages.
For cubic splines, it has been proven that the centripetal method

produces results that are closer to the data polygon [Floater 2008].
Therefore, we use such method to generate our set of parameters.

Once we have determined the parameters, we proceed with
the task of approximating the sub-trajectories with Bézier curves.
We are interested in cubic Bézier curves (i.e. d = 3), which are
defined by four points < P0, P1, P2, P3 >. We want the curve to pass
through the first and last data points, which gives P0 = B(0) = M0
and P3 = B(1) = Mm−1. There are only two unknowns, which are
control points P1 and P2. Hence, the least squares error that we are
seeking to minimize is

f (P1, P2) =
m−2∑
j=1

|Mj − B(tj )|
2 (1)

Our goal is to find a pair of values, P1 and P2, that minimizes
equation (1). Solving the equation gives us the solution

P1 = (A1B1 −A12C2)/(A1A2 −A2
12) (2)

P2 = (A1B2 −A12C1)/(A1A2 −A2
12) (3)

where

A1 = 9
m−2∑
j=0

t2j (1 − tj )
4

A2 = 9
m−2∑
j=0

t4j (1 − tj )
2

A12 = 9
m−2∑
j=0

t3j (1 − tj )
3

B1 =
m−2∑
j=0

3tj (1 − tj )
2[pj − (1 − tj )M0 − t3jMm−1]

B2 =
m−2∑
j=0

3t2j (1 − tj )[pj − (1 − tj )M0 − t3jMm−1]

By following these steps, we have approximated each subtrajec-
tory with a Bézier curve defined by parameters < P0, P1, P2, P3 >.
The curves are joined end-to-end, forming a point-wise continuous
Bézier spline. This can be seen in Figure 4. In this case, the continu-
ity order, along with other curve properties, is not relevant as the
spline will be only used as a tool for deforming the trajectories.

4.3 Trajectory Parameterization
As described in the previous section, we approximate each ani-
mation trajectory by a series of Bézier curves that are connected
end-to-end forming a Bézier spline. The curve parameters t play an
essential role in the trajectory deformation. These can be used to
calculate the matching curve point to any given trajectory point by
merely evaluating the curve function at the corresponding parame-
ter. Our goal is to identify a way of parameterizing the trajectory
points with respect to their corresponding curve in the spline. We
seek to facilitate the modification process by applying the desired
adjustments to the spline rather than directly to the trajectory.

We have adopted the method of curve skeleton skinning presented
by Yang et al. [2006] to suit the problem of trajectory parameter-
ization. The original method is used to generate realistic skin de-
formation by representing the relationship between the movement
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of the skeleton and skin deformation in a non-linear continuous
fashion. In our case, this approach can be used to generate defor-
mations on the animation trajectories from local transformations
of the Bézier curve points. The deformed trajectories preserve the
original structure of the motion thereby preserving the artistic in-
tent. This technique is easy to use and allows full control over the
deformation process.

As shown in Figure 4, we construct a complete coordinate-system
around each spline point. The curves that form the spline are defined
by four parameters < P0, P1, P2, P3 >, where P0 and P3 correspond
to points in the original trajectory. Following this, a coordinate
system can be constructed in three steps

(1) First of all, we must compute the coordinate-system of the
spline points that are associated with data points in the orig-
inal trajectory. The spline is composed by a set of N − 1
curves, (B(t)0, . . . ,B(t)k , . . . ,B(t)n−2), each with two end-
ings Pk0 and Pk3 , which correspond to the points that we are
looking for. The coordinate-system at these points can be
defined from the curve geometry

a =
∂

∂t
B(t)k

b = z a

c = a b

(4)

where
z = (0, 0, 1)

(2) Next, we must compute the coordinate-system of the rest
of the spline points, which are the points inside the curve
endings. The coordinate-system at these points can be calcu-
lated by linear interpolation between the coordinate-systems
at the curve endings computed in 1. Note that we have a set
of parameters t , each corresponding to a curve point. Thus,
we have

(a,b, c) = t(a1,b1, c1) + (1 − t)(a2,b2, c2) (5)

(3) We can further create a 4x4 transformation matrix A by
arranging the vectors of the coordinate-system as column
vectors.

Once we have defined a coordinate-system for all the spline
points, we must transform each trajectory point Mj = (x ,y, z) to
the local coordinate-system Ej = (a,b, c,o). To do this, we can use
the previously defined transformation matrix Aj .

After the trajectory points are bound with the Bézier spline, de-
forming the trajectory is straightforward. First, wemodify the spline
and re-calculate the coordinate-systems at each spline point. Then,
we can directly transform the local coordinates of each trajectory
point with the associated local coordinate-system to obtain the new
trajectory positions. We only allow modifications to points shared
between the spline and the trajectory. To ensure the preservation
of C1 continuity, the tangents between the points are maintained
during the deformation process.

4.4 Pose Finding
The goal of this section is to generate a humanoid animation that
meets the requirements provided in both the metadata and our new
trajectories. In the case of objects, the solution is straightforward.

At each frame, the desired positioning is already encoded in the
new trajectory of the object.

The placement of effectors is a more complicated issue because
moving an effector affects the whole body of the character. In this
case, we use a full body inverse kinematics solver to find a pose
for the character in which its parameterizable effectors are in the
desired trajectory positions. At each trajectory point, we go through
the state of all the parameterizable elements and use them as input
for the IK solver. Then, we make an additional call to the solver to
satisfy the look-at constraints.

After repeating the same process for all trajectory points, we
get a set of poses in which the modifiable effectors are placed as
desired and the character is either looking at a specific position or
in the process of doing so. Finally, if we put together the poses and
object states in their proper consecutive order, we obtain the new
animation. This animation is baked and can be used at run-time.

5 RESULTS
This section includes a series of results generated with our anima-
tion generation solution. The metadata definitions can be found in
the supplemental material.

We have built a simple user interface to visually modify the ani-
mation trajectories. The user can click on the modifiable trajectory
points and update their position in the scene, which automatically
deforms the corresponding trajectory. Once the trajectories have
been set to the desired values, the user can generate the new an-
imation clip. Even an untrained user can control and modify the
animation trajectories with confidence and ease.

In Figure 1, we generate a variation of a pointing animation.
We modify the position of the right hand at the last frame of the
animation to make the character point to a different location.

In Figure 5, we generate multiple variations of a pouring tea
animation. Figure 5(A) is the original animation. In Figure 5(B), we
scale and translate the teacup to a different position on the table.
Furthermore, we adjust the position of the left hand so that it does
not collide with the newly positioned cup. In Figure 5(C), we rotate
the teapot. In Figure 5(D), we replace the teapot by a similar one
with a much shorter spout. Our solution generates the correct result
due to a metadata constraint between the teapot and the teacup.
Directly replacing the teapot in the original animation results in an
incorrect pouring position.

In Figure 6, we generate a variation of a sitting animation. We
modify the position of the pelvis to make the character sit at a lower
height. The upper body posture of the character is maintained due
to a metadata constraint between both hands and the pelvis.

In Figure 7, we generate a variation of an examine-with-lamp
animation. We moved the right hand at a specific trajectory point
so that the character examines a higher position. The lamp follows
the movement of the hand due to a metadata constraint between
them.

6 EVALUATION
Wehave conducted a preliminary evaluation of the authoring aspect
of the system by having a digital artist generate a few metadata files
for different animations, visualize the results and then provide feed-
back. All of the evaluated components have been implemented in
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Figure 5: Pouring tea animation. Comparison between orig-
inal animation and three resulting animations generated by
our method.

Figure 6: Sitting animation. Comparison between original
animation (on left) and resulting animation generated by
our method.

the Unity game engine. The goal of the evaluation is to demonstrate
that our system can support a digital artist through the animation
generation process. We hypothesize that the system, in combina-
tion with artist-defined metadata, is able to generate animation
modifications that preserve the original intent of the artist. We fo-
cus on the evaluation of the authoring interface and the quality of
the generated results. The evaluation process is divided into three
phases: an introduction to the metadata interface, several authoring
tasks for the artist and a final interview to collect feedback.

Phase 1: Introduction. First, the artist was given an overview of
the interface and the relationship with metadata properties. Then,
we demonstrated the generation of metadata for the "examine with

Figure 7: Examine-with-lamp animation. Comparison be-
tween original animation (on left) and resulting animation
generated by our method.

lamp" animation visualized in Figure 7. To illustrate the importance
of the metadata, we authored two different metadata represen-
tations for the same animation. The artist witnessed the whole
authoring process, from the definition of objects and effectors to
the specification of particular events.

Phase 2: Authoring Task. Later, the artist was given the task to
generate metadata for the "pointing" animation in Figure 1. The
target of this task was to generate metadata that allowed to modify
the pointing target. Once the first task was completed, we moved
onto the more complex "pouring tea" animation in Figure 5. In this
case, the target of the task was to allow for modification of both
the teapot and the cup. The expectation was that the authoring
interface would allow the artist, newly introduced to the system,
to create metadata intuitively and with a minimal learning curve.
We encountered no serious problems during the evaluation. How-
ever, by observing the artist using the interface, we have gathered
valuable feedback about the system. We believe that we are going
in the right direction with the current metadata representation, but
that the authoring interface can still be improved.

Phase 3: Interview. To conclude the evaluation process, we inter-
viewed the artist and collected feedback. Initially, we asked about
the clarity and understanding of the metadata representation. We
attained the most insightful feedback from this question. The artist
mentioned that the concept of globally modifiable objects is not
intuitive enough and asked for further clarification. The artist also
pointed out that the implications of adding both objects and effec-
tors would be better understood if we displayed their trajectories
in the animation preview. In this way, the user would be given a
hint of the animation modification method. The last proposal was
to update the representation of metadata events. Currently, the
events are global, so they have an impact on all the parameteriz-
able elements. The artist pointed out that we could improve this
representation by making the events local to the elements. In other
words, each element would be influenced only by the events in
which it participates. We agree that all of these are valid observa-
tions and that they would improve the representation. Finally, we
showed the artist a series of animations generated with the system.
The feedback was that most improvements could be achieved in
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the pose finding step. The desired improvements are all related to
the modification of walking motions. For these motions, the artist
hopes for a custom solver with basic reasoning of physics from the
effector trajectories.

At last, we asked for suggestions or ideas for improving the
system. The one suggestion was to reason about the pull vectors
of both the elbows and knees of the character when solving for
the poses. The artist believes that this could make a big difference
in the quality of the results and that the poses would look more
natural.

7 LIMITATIONS AND FUTUREWORK
The presented method experiences problems when dealing with
animations that do not have an explicit mapping to our metadata
representation. Because we want to give as much control as possible
to the artist, the quality of the results is significantly affected by the
defined metadata. Therefore, if the artist does not find an adequate
mapping, the results may be unpredictable. For interactions, such
as pointing or pouring tea, we can easily find spatiotemporal con-
straints between the character and the environment. More complex
motions, such as walking, are left for future work.

The animation editing system generates the modified character
poses by using an inverse kinematics heuristic solver [Aristidou and
Lasenby 2011]. The low computational cost of the solver compro-
mises the quality of the resulting poses, which may look unnatural.
By adding bio-mechanical constraints in the solver, we can limit
the motion of the joints and avoid unnatural poses [Maurel and
Thalmann 2000]. Still, such improvement does not address more
dynamic physical properties, such as momentum conservation or
force constraints. More effort is required to address this issue of
physically plausible motions [Rabbani and Kry 2016; Shapiro and
Lee 2011].

Independently of the solver, the input of the inverse kinematics
problem is the desired set of positions for the effectors, which are
called targets. A target is said to be unreachable if it is located
further than the character can reach or if there is no way to pose
the character to reach it. A significant amount of processing time
could be saved by computing the reachable zone of the character.
Additionally, there is a considerable benefit in constraining the
animation parameters to the character-reachable zone. In Figure 8
we can see examples exceeding the maximum reachable zone of
the character for the pointing and the pouring tea animations.

In addition to the above, there is a lot to be gained by extending
the system to deal with collision avoidance. In Figure 9 we can see
two examples of possible collisions with the environment in the
pouring tea animation. Tao and Yang [2017] propose an approach
for collision-free motion based on the FABRIK algorithm [2011].
Another alternative to solve the collision problem can be found
in [Brown et al. 2004]. Along the same line, Unzueta et al. [2008]
present an IK algorithm that includes a self-collision detection step.

The presented method aims to serve as the basis for an animation
modification solution that can be fully integrated into applications
that have time constraints. This target imposes an essential con-
straint upon the computational cost of the inverse kinematics solver.
As a preliminary step, we use a method that decimates an animation
trajectory to a similar trajectory with fewer points. The tolerance

Figure 8: Maximum character-reachable zone in the point-
ing and pouring tea animation. The inverse kinematic tar-
gets are placed outside of the reachable zone which results
in unsolvable character poses.

Figure 9: Example collisions in the pouring tea animation.

Table 1: Comparison of the execution time (seconds) of the
animation editing system with and without trajectory sim-
plification.

Pointing Pouring tea

Simplif. No simplif. Simplif. No simplif.

Pose Finding 0.0052s 0.0070s 0.0341s 0.0390s
Total 0.0199s 0.0231s 0.1732s 0.2008s

of the method should be chosen with care because it is a parameter
that affects the final shape of the curve. Only the remaining points
are used in the pose finding step. A comparison of the execution
time of the pose finding step before and after applying this tra-
jectory simplification method can be seen in Table 1. Additional
improvements in this direction as well as performance validation
will be provided as future work.

8 CONCLUSION
There has been extensive research on human motion editing, in-
cluding style-based editing, and yet the standard in the industry is
to generate massive animation libraries and to enforce strict metrics
on the environment. The extent to which animations are modified
after their creation is relatively small and typically includes only
minor touch-ups using inverse kinematcs in a post-processing step.

For applications with limited resources to devote to animation
quality, animation sequences can end up looking robotic, and the
overall visual quality can be negatively affected. In recent years,
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the growing availability of online motion libraries has given rise to
editing methods based on captured data. These methods often seek
to reduce the artist’s work in the animation generation process.
On the contrary, our goal is to have artists actively participate in
the post-processing of animations by extending the modification
process with artist-defined metadata. While our method still re-
quires manual annotation for each animation clip, the proposed
metadata provides artists and developers a common tool to edit
motions while retaining the artist’s intent.

By focusing on limitations in the current development process,
we have been able to come back to more simple solutions than the
contemporary line of research in motion editing. Our method is
capable of generating different variations of the same animation
while preserving the original intent of the artist. The method uses
metadata to encode the artistic intent of the animation. The re-
sults reflect a good compromise between intent preservation and
animation quality. The feedback collected during preliminary eval-
uation provides guidance on how to proceed further and enhance
the quality of our results.

In summary, we have built a system that can generate variations
of the same animation in a fast and straightforward manner. The
system saves time and resources by avoiding the cost of going back
and forth in the animation process.
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