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Abstract
We report results for an online multi-keyword spotter in

a game that contains overlapping speech, off-task side talk,
and keyword forms that vary in completeness and duration.
The spotter trained on a data set of 62 children, and expecta-
tions for online performance were established by 10-fold cross-
validation on that corpus. We compare the post hoc data to the
recognizer’s performance online in a study in which 24 new
children played with the real-time system. The online system
showed a non-significant decline in accuracy which could be
traced to trouble understanding the jump keyword and the pre-
dominance of younger children in the new cohort. However,
children adjusted their behavior to compensate, and the overall
performance and responsiveness of the online system resulted
in engaging and enjoyable gameplay.
Index Terms: automatic speech recognition, speech analysis,
human-computer interaction

1. Introduction
Existing speech technology tends to be poorly suited for young
children at play, both because of their age-specific vocal charac-
teristics and because they typically play simultaneously. With
this population, side banter, turn-taking directives, and emo-
tional outbursts signaling excitement and delight are continu-
ously interwoven into the activity and seem intrinsic to its en-
joyment [1, 2]. Because our primary goal is to create language-
based experiences that are engaging and fun, we work to de-
velop Automatic Speech Recognition (ASR) based play that
will support young children’s natural behavior. In previous pub-
lications we have described the underlying multi-keyword spot-
ting algorithm [3] and extensions to the basic algorithm required
for online performance [4] in detail, as well as the proxy scale
for engagement used to code our data [5]. We review those as-
pects of the system briefly but focus here on the culmination
of the work by presenting online performance results for pairs
of children playing a fast-paced, voice-controlled game in the
presence of challenging phenomena like keyword variation, so-
cial side-talk, and overlapping speech.

The online results reported here are contrasted with the of-
fline performance of the same word spotter on an earlier data
set [4]. In the games that produced the earlier data, keyword
recognition was performed by a human wizard, and the spotter
was evaluated using a post hoc 10-fold cross-validation on the
children’s audio. The system’s overall performance was good,
with mean accuracy, precision, and recall of 83%, 83% and 93%
respectively.

In this paper, we are concerned with how children experi-
ence and play the game with the word spotter as ASR. Note
that what children experienced before was an interaction with

the wizard’s recognition performance. Their actions were a re-
sponse to the qualities and characteristics of that performance.
To the extent that the online spotter behaves differently than the
wizard, children may change their behavior, exposing problems
that were hidden in the offline analysis and/or compensating for
weaknesses in the technology by their own adaptation. Thus,
to evaluate the system’s performance in autonomous, real-time
play, we ask and answer three questions: Is performance during
actual gameplay significantly different from the expectations set
by the post hoc analysis? If so, do the differences create corre-
sponding changes in the children’s behavior? And if that is also
true, do those changes impact the children’s enjoyment?

1.1. The Training Corpus

Mole Madness (hereafter, MM) is a speech-controlled interac-
tive video game similar to the Super Mario Bros®. Gameplay
consists of two players moving an animated mole through its en-
vironment, acquiring rewards and avoiding obstacles (see Fig-
ure 1). In a simple design that is easy for even very young chil-
dren, one player creates horizontal movement using the word go
and the other creates vertical movement with jump. Successful
movement requires coordinated, sometimes simultaneous turn-
taking, leading to typical behavior for multi-child interaction:
overlapping speech and the use of task vocabulary in side-talk
[6]. The limited expressiveness of the two-word vocabulary also
gives rise to creative keyword variations using elision (“G- g-
go”) and elongation (“Juuuuump”). Although the meaning of
the alternate forms is game-specific, variability in vowel dura-
tion is a general problem in understanding children’s speech [7].

Sixty-two children between the ages of five and ten played
MM as part of a multi-activity data collection in July and Au-
gust of 2015 that we call “The Summer Games” (hereafter, SG).
Participants’ mean age was 7.45 years (standard deviation 1.44
years), and 48% were female.1 Children were compensated for
their participation.

Speech recognition during SG was performed by a wizard
who listened via headphones in a separate room, trying to map
each command to a button press on a game controller. The
study produced ~7 hours of gameplay which was then hand-
segmented and transcribed to create the corpus of ~11.8K non-
overlapping instances of go, ~9.4K non-overlapping instances
of jump, ~10.1k instances of overlapping keywords (mixed),
~2.1K social utterances, and ~12.9k background segments.

1Children played in pairs and 1-on-1 with a robot. We focus here
on the child-child play because it is more variable, produces higher en-
gagement scores, and is more difficult for the recognizer, and so offers
a more rigorous test of online performance.



Figure 1: Two participants playing Mole Madness (left) and a screenshot from the game (right).

2. The Multi-keyword Spotter
Applications that use speech recognition are becoming more
common due to the amount of data available and the maturation
of machine learning approaches. However, existing systems
tend to derive their acoustic models largely from adult speech
[8, 9] and/or their language models from single-user search and
scheduling tasks [10, 11]. As a result, current ASR tends to
be poorly suited for young children, whose language is acous-
tically, lexically, syntactically, semantically, and pragmatically
distinct [12, 13].

The ASR we’ve developed is an example-based keyword
spotter that, at its core, handles an audio stream as the ran-
dom output of a generative probabilistic model in which ob-
served overlapping and non-overlapping keywords are the prod-
ucts of a latent mixture of Student’s t-distributions (hereafter,
TMM)[3].2 The current spotter extends our earlier work in three
ways [4]. First, we add separate models for social speech and
background noise segments to the original go, jump, and com-
bination (mixed) models. Second, we use a 150ms time slice
rather than the original 300ms during training and at run time
for better responsiveness.

The third extension is to replace the original threshold-
based heuristic that was used to assign a final keyword label
to the output posterior distribution of the TMM over the labels.
Instead, we assign a label using a multi-class classifier (SVM)
that takes as input the current time slice posteriors as well as
the posteriors of four previous time slices. The SVM achieves
greater overall accuracy than the spotter alone by exploiting lo-
calized temporal patterns in the training data. The solution as
a whole - using the full context of the relative likelihood of the
five different classes of speech over time - both regains context
lost by switching to a shorter time slice and takes advantage
of information present during social speech (allowing the sys-
tem to differentiate between the imperative “go” and the “go”
in “No, don’t say go yet,” for example).

At run time, a segment label of go or jump sends the corre-
sponding command to the game; a segment label of mixed sends
both commands.

3. Evaluation Metrics
Because our goal is to understand the spotter’s performance in
terms of the child’s experience, we use a method of evaluation

2A phone-based approach to keyword spotting for children is de-
scribed in [14], but does not deal with overlapping speech.

here, as in the original post hoc analysis, that focuses on the
causal connection between words and action. Put concretely: if
one or both keywords are spoken to the mole, the child should
perceive the corresponding action(s) as the mole’s response; if
a keyword is spoken incidentally in a social context, or if no
keyword has been spoken, then no corresponding change in the
mole’s behavior should be seen. Duration of the keyword is
also considered meaningful. If a typical go or jump intends
the corresponding action within a causally-meaningful period
of saying it, then fast speech via elided forms (“g- g- g- go”)
is defined with respect to that expectation (i.e., faster speech
should produce faster movement). Slow speech, on the other
hand, appears to have two distinct meanings. Emphatic elon-
gation (“gooo!”) seems to ask for a single bigger movement
(or possibly, a movement right away), while prolonged elonga-
tion (“gooooooooooooo”) seems to ask for steady or on-going
movement. It often has a sing-song quality and may simply be
a way to vary speech when the vocal chords become tired.3

To evaluate the above phenomena we use the human-
segmented and labeled data as ground truth. The human an-
notations give single-unit status to whole or partially formed
keywords, entire utterances of social speech, and (by default)
uninterrupted segments of silence, independent of their length.

We bridge the divide between recognizer output every
150ms and human judgments of semantically-meaningful units
by aggregating across time slices with respect to the annota-
tion. The window over which we aggregate reflects assumptions
about how long a lag there can be between voicing the com-
mand and seeing the mole’s behavior change before the child no
longer experiences the two as causally connected. Choosing the
right recognition window is non-trivial because it may depend
on the particular activity or game [15], but evidence suggests
a lag in the 300-700ms range is acceptable [16, 17]. Follow-
ing the literature, we define the window over which recognizer
output is aggregated to extend from the beginning of the an-
notation through three time slices (450ms) after the end of the
annotation. This definition may give credit for detecting a key-
word based on evidence that occurs after the annotation ends,
but does so under the assumption that children would also at-
tribute the mole’s action to their utterance within that period.

3We derive the practical definitions of fast, medium and slow speech
from the distribution of keyword lengths in the SG data. In particular,
we define fast and slow speech to correspond to a keyword with length
that is less/more than half a standard deviation from the mean length,
respectively.



To compute standard statistics, then, each ground truth key-
word annotation counts as either a false negative (FN) or a true
positive (TP). FN/TP is scored when there is no/at least one
time slice with the keyword’s label in the window. A time slice
labeled as mixed represents both a jump and a go command for
evaluation purposes.

The TP definition means that a single keyword annotation
in the corpus “consumes” all the matching time slice detec-
tions within the window’s bounds. An average length keyword
(~300ms) is likely to cross multiple timeslices and generate one,
occasionally two, commands per annotation. For fast (elided)
keywords, the system’s performance is bounded - even if a child
can emit /g/ more quickly than every 150ms, the recognizer can
detect and generate at most one command per time slice.

The TP definition also means that an annotation is counted
as a true positive even if there is a time slice within the window’s
bounds that does not match. When the annotation is an elided
or typical duration keyword, this makes sense because the ex-
istence of an intermixed social or background label has little
effect on the mole’s physics or what the child experiences. For
a slow/elongated keyword, however, the TP definition biases the
statistics in the recognizer’s favor, potentially giving full credit
to a five second go that has only an occasional correctly-labeled
time slice in it even though the apparent behavior would not
correspond to the steady movement that is intended. To re-
move this bias, we preprocess single slow speech annotations
into separate consecutive 300ms keyword segments and apply
the TP/FN definitions to each segment individually.

Social speech and, by default, non-speech segments with
silence and/or background noises are the potential sources of
true negative (TN) and false positive (FP) judgments. They
are scored as TN if there is no time slice with a keyword la-
bel in the window. An FP is scored when a keyword label
generated by the recognizer does not fall within the window
of any keyword annotation (and so must be assigned to a non-
keyword segment). An FP is also scored for any isolated (non-
overlapping) keyword recognized as an instance of the other
keyword.

4. Expected versus Autonomous
Performance

A multi-keyword spotter built using all of the data from SG was
integrated into Mole Madness and tested with 24 new children
between the ages of four and nine as part of a multi-activity
data collection in the winter of 2015 (WG). The WG cohort had
a mean age of 6.7 years (standard deviation 1.6 years) and 58%
were female. Subjects were compensated as in SG.

Gameplay was hand-segmented and labeled to produce
ground truth annotations, with 67 minutes of play generating
~1250 non-overlapping instances of go, ~1900 non-overlapping
instances of jump, ~1900 instances of overlapping keywords,
~630 social utterances, and ~2300 background segments. We
compute performance statistics using the method described
above, but with the actual timestamp of every go and jump exe-
cuted by the game rather than post hoc, derived labels because
the synchronized log data more accurately describes when the
children saw the named action.

The purpose of the current study is to answer three ques-
tions, the first of which is: Are there significant differences be-
tween the performance of the deployed system and the expecta-
tions set by the post hoc analysis? The top of Table 1 contrasts
the statistics in SG and WG. Neither precision nor accuracy is

Table 1: Mean (standard deviation) for expected (SG) and ob-
served (WG) performance.

SG WG

Accuracy 0.83 (.10) 0.77 (.10)
Precision 0.83 (.10) 0.80 (.11)
Recall∗ 0.93 (.09) 0.83 (.10)

Go 0.94 (.10) 0.89 (.09)
Jump∗ 0.92 (.09) 0.81 (.13)
Not Overlapping∗ 0.93 (.08) 0.81 (.11)
Overlapping 0.93 (.10) 0.86 (.11)
Slow∗ 0.94 (.08) 0.83 (.10)
Medium∗ 0.94 (.08) 0.83 (.11)
Fast 0.88 (.14) 0.82 (.16)

∗ statistically significant at 5% level

Figure 2: Age distributions of children in the training (SG) and
test (WG) sets.

statistically different across the two corpora, but the difference
in recall rate is significant (Student-t, p <.01). The remainder
of the table entries break recall down with respect to keyword,
overlap, and speech rate, showing that the overall difference in
recall occurs primarily in the jump command and is not due to
either overlap or fast speech.

Further analysis suggests that the increase in recall error
stems from the difference in the age distributions of children in
the training (SG), and test (WG) sets (see Figure 2). The mean
age of SG is almost half a year older than the mean age of WG,
and only 8% of SG is under five and a half years (and none
are under five) while 32% of WG is under 5 and a half years
(and three children are under five). Every measure in Table 1
is significantly positively correlated with age in WG, and no
measure correlates with age in SG. Concerning jump recall, in
particular, we note that deaffrication is a type of disarticulation
in which an affricate such as /j/ is replaced with a stop like /d/.
Although the literature suggests that this phonological process
is typically outgrown during the fourth year [18], we find that
if we restrict the analysis to pairs of children in which both are
older than five, the distinction between go and jump recall in
WG disappears (the overall recall rate rises from 83% to 87%
and accuracy rises from 77% to 80%). In short, the models of
jump trained from the predominantly older children’s speech in
SG do more poorly with the younger speakers in WG.

Having found significant differences between expected and



observed values, we proceed to the second question: Did the
children change their behavior as a result? To answer this ques-
tion, we must consider what the SG children experienced - the
wizard’s behavior - rather than what they would have experi-
enced if the word spotter had been used. Table 2 repeats the
WG statistics and contrasts them with the same statistics com-
puted for the wizard’s button presses given a 450ms lag and a
700ms lag (near the outer limit for causal connection suggested
by the literature, but fairer to the wizard, who had a mean re-
action time of 529ms (standard deviation 419ms)). With either
lag, the children’s experience with the wizard was consistent
with respect to overlap and speech speed. At 700ms the wizard
is also consistent with respect to keyword, while at 450ms she
does better on jump than go. The word spotter is also consistent
with respect to speed, but does significantly worse for jump than
go and worse for non-overlap than overlap.

Against this backdrop, we examine the prevalence of each
keyword in the two corpora and again find significant differ-
ences. WG has a higher percentage of jumps (59% versus 48%,
Student-t, p <.01) as well as higher percentages of slow and
medium speech (Student-t, p <.03 and p <.05, respectively).
Taken with the discussion above, these patterns suggest that
with the autonomous system the younger children had to say
jump more carefully and more often to get the mole to move.
This interpretation also explains why the drop in fast speech re-
call that was expected, based on the post hoc performance of
the spotter in SG, did not materialize in WG.

Table 2: Recognition as experienced in WG and in SG with the
wizard (Wiz), assuming 450ms or 700ms lag.

WG (450) Wiz (450) Wiz (700)

Accuracy 0.77 (.10) 0.67 (.19) 0.74 (.17)
Precision 0.80 (.11) 0.74 (.19) 0.80 (.16)
Recall 0.83 (.10) 0.69 (.22) 0.76 (.20)

Go 0.89 (.09) 0.66 (.25) 0.74 (.22)
Jump 0.81 (.13) 0.71 (.22) 0.77 (.19)
Not Overlapping 0.81 (.11) 0.68 (.23) 0.75 (.20)
Overlapping 0.86 (.11) 0.69 (.21) 0.77 (.19)
Slow 0.83 (.10) 0.65 (.24) 0.73 (.20)
Medium 0.83 (.11) 0.68 (.22) 0.75 (.19)
Fast 0.82 (.16) 0.71 (.24) 0.78 (.23)

Having found both differences from predicted values and
evidence that at least some of the children changed their behav-
ior, we turn to the final question: Did the changes impact their
enjoyment of the interaction? The method used for evaluating
enjoyment has been described in detail in [5]. In recap: three
mothers of young children coded the video of each player in a
pilot study using a seven point proxy scale for engagement, with
labeled values at 1 (ready to do something else), 3 (could take
it or leave it), 5 (very much into the game) and 7 (can’t drag
him/her away) and unlabeled values at 2, 4, and 6.

The same coders and scale were used to evaluate SG and
WG. Because there were systematic differences between the
coders in the pilot based on how important they found verbal
or visual cues, we compute the mean enjoyment score for each
child separately for each coder. We find that mean player enjoy-
ment (or, at least, willingness to remain at play) is uncorrelated
with age in both SG and WG, and is significantly higher in WG
for all three coders (p <.01). The average mean across all play-
ers in the Summer Games was 3.64, 3.88, and 3.67 (coders 1,
2, and 3, respectively), while the average mean across all play-

ers for Winter Games was 4.68, 5.06 and 4.91. In other words,
on average SG players are judged to be less than halfway be-
tween could take it or leave it and very much into the game,
while WG players are judged to be solidly enjoying the game-
play. This result is not surprising given the values in Table 2.
We assume that children will be variable in how much lag they
tolerate, but will need action to occur within 700ms of voicing
a command to connect their words to the mole’s movements.
At shorter lags (e.g., 450ms) more children should connect the
events; such children will experience better performance from
the spotter than the wizard. At longer lags (e.g., 700ms), the
wizard’s responses will seem more accurate than they did at
450ms, but fewer children will experience them as causally con-
nected. Accuracy at 700ms for the wizard is about what it is at
450ms for the keyword spotter, but recall - which is necessary
to move the mole - is still significantly poorer in all but fast
speech.

5. Conclusions and Future Work
A multi-keyword spotter to be used in a fast-paced game was
trained on data from 62 children, and expectations for online
performance established by 10-fold cross-validation. When the
system was tested online, recall dropped significantly from the
level predicted by the post hoc analysis, due primarily to dif-
ferences in the age distributions of the two cohorts. Although
the online system had trouble understanding jump with younger
children, they adjusted their behavior to compensate, and the
overall performance was both accurate enough and responsive
enough to produce an enjoyable interaction. In future work, we
intend to combine the SG and WG corpora and contrast per-
formance under models built from all the data to performance
under models built separately for younger and older children in
our age range.

Other directions for future work focus on understanding
both the limitations and broader applicability of our approach.
Mole Madness was intentionally designed as a well-constrained
point in the space of language-based games for children. Over-
lapping speech in MM contains at most two voices, has only
two keywords, and uses keywords chosen to have no common
phonemes and approximately the same mean duration under
normal conditions. By relaxing each of these constraints sys-
tematically, we can gradually open the design space to new and
substantively different interactions. Doing so creates the possi-
bility of studying both more difficult instances of the linguistic
issues that motivated this work and new linguistic phenomena
that will undoubtedly arise.
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