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Abstract

Viewpoint estimation, especially in case of multiple
object classes, remains an important and challenging
problem. First, objects under different views undergo
extreme appearance variations, often making within-
class variance larger than between-class variance. Sec-
ond, obtaining precise ground truth for real-world im-
ages, necessary for training supervised viewpoint esti-
mation models, is extremely difficult and time consum-
ing. As a result, annotated data is often available only
for a limited number of classes. Hence it is desirable to
share viewpoint information across classes. Additional
complexity arises from unaligned pose labels between
classes, i.e. a side view of a car might look more like a
frontal view of a toaster, than its side view. To address
these problems, we propose a metric learning approach
for joint class prediction and pose estimation. Our ap-
proach allows to circumvent the problem of viewpoint
alignment across multiple classes, and does not require
dense viewpoint labels. Moreover, we show, that the
learned metric generalizes to new classes, for which the
pose labels are not available, and therefore makes it pos-
sible to use only partially annotated training sets, rely-
ing on the intrinsic similarities in the viewpoint man-
ifolds. We evaluate our approach on two challenging
multi-class datasets, 3DObjects and PASCAL3D+.

Introduction
One of the fundamental challenges in visual object recogni-
tion is dealing with the appearance variation of the objects
due to the viewpoint changes. A bicycle and a horse might
look very different depending on whether they are seen from
the frontal or the side view. Therefore, multi-view recog-
nition, or joint pose estimation and object recognition, has
been an important topic in computer vision (Savarese and
Fei-Fei 2007, Sun et al. 2009, Zhang et al. 2013) with re-
cently resurgent interest (Bakry and Elgammal 2014, He,
Sigal, and Sclaroff 2014, Tulsiani and Malik 2015) 1.

However, obtaining labels for object pose is very diffi-
cult. While one can potentially obtain (weak) class labels
from the web (e.g., through Google/Flickr searches), pose
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1We will use the terms viewpoint and pose estimation inter-
changeably.

data is not available through such mediums. Therefore pose
labeling almost exclusively requires manual annotation, but
even that is not straightforward as people are not consistent
in their definition of canonical viewpoints (e.g., some may
define the side view of a bicycle to be zero-degrees, others
perhaps ninety-degrees) and notoriously bad at fine grained
viewpoint estimation.

In more extreme case of symmetric objects, such as a
ball or a vase, finding object pose is an ill-posed problem
since one cannot make visual distinction between different
pose orientations of the object. Even if we provide canoni-
cal pose for each object and do not consider such ill-posed
cases, the fact that people are bad at the task, requires expen-
sive alignment of templates to find the precise pose (Xiang
et al (2014)). Another practical problem is that given pho-
tographer bias, in many real-world datasets, the observed
pose variations might not be large enough to cover the en-
tire view-based appearance space of the object (Chen and
Grauman 2014).

To cope with such difficulties for constructing supervised
pose datasets, it would be convenient to minimize such la-
beling effort by possibly transferring knowledge about pose
from one class to another. To this end, we propose a method
to exploit common appearances across classes for the task of
joint categorization and pose estimation. Our idea is based
on the intuition that in many cases, an object could appear
more similar to another object from a different class in the
same viewpoint, than to an object from the same class in a
different viewpoint. For example, a side view of a motorcy-
cle resembles a side view of a bicycle more closely than a
frontal view of a motorcycle, and a side view of a horse re-
sembles a side view cow more closely than a frontal view of
a horse. This suggests that there exist some common appear-
ances shared across classes for the same viewpoint for us to
exploit.

Specifically, we propose a multi-task metric learning ap-
proach (see Figure 1), which shares a common metric among
the classes to capture shared view-specific components, to
solve this joint pose and class recognition problem. We re-
sort to metric learning because modeling the pose variation
with similarity constraints is a natural way to express on
one side continuity of the appearance variation due to pose
changes (unlike classification with discrete labels) and on
another side allows to easily express the homeomorphism



between the object’s pose manifold and the unit sphere
(Zhang et al (2013)).
Contributions: 1) We explore metric-learning-based ap-
proaches for simultaneous pose and class prediction, which
are flexible with respect to the type of the viewpoint la-
bels, and are also scalable to a large number of categories.
We also show how to extend these methods for detection.
2) We further propose a novel multi-task metric learning ap-
proach, which shares a common metric among the classes
to capture shared view-specific components, while still al-
lowing to capture class-specific individual aspects of pose-
parametrized appearance. 3) We show that models learned
using the multi-task approach are capable of performing
zero-shot pose estimation, which, to our knowledge, is a
novel task not addressed by any existing models. 4) We
obtain state-of-the-art performance on both pose and class
recognition in 3DObjects and PASCAL3D+ datasets.

Related Work
Joint pose estimation and classification: Joint pose estima-
tion and instance/class recognition is a well-studied topic in
computer vision. Most prior works pose the problem as clas-
sification (Savarese and Fei-Fei 2007, Sun et al. 2009, Xi-
ang, Mottaghi, and Savarese 2014), where the task is to clas-
sify each instance as belonging to a class in a specific dis-
cretized viewpoint. He et al. (2014) uses a kernel-based ap-
proach to jointly model localization and pose estimation us-
ing a product of two kernels. More recently, researchers have
been exploring the power of deep learning models, which
have shown state-of-the art performance for classification
and pose estimation. Ghodrati et al (2014) used activation
features from the fifth layer of a convolutional neural net-
work (Jia et al. 2014), and Tusiani and Malik (2015) fine-
tuned a convolutional neural network by treating a combina-
tion of an object class and a specific angle as an output.

Other works formulate the pose estimation task as a
regression problem (Torki and Elgammal 2011) from the
whole image to the continuous view space. In (Fenzi et
al. 2013, Redondo-Cabrera, Lopez-Sastre, and Tuytelaars
2014) a set of votes is produced using regression from lo-
cal image patches (or features) and aggregated into a final
viewpoint prediction. Zhang et al (2013) proposed a genera-
tive model, which assumes that each instance is generated by
a view-transformation followed by a style-transformation.
This generative framework is further extended in (Bakry and
Elgammal 2014) to consider view- or class- specific projec-
tions.

Our metric learning approach, unlike classification or re-
gression methods, can handle both discrete and continuous
labels. Further, the challenging task of zero-shot pose recog-
nition, unexplored by any of the introduced methods, can be
performed within the same framework.
Metric learning: Our classification and viewpoint predic-
tion is based on the k-nearest neighbor search in the learned
metric space that maximizes class separation and preserves
the view manifold. For base metric learning, we use large
margin formulation of Weinberger and Saul (2009). Specif-
ically, we build upon the large-margin multi-task metric

Figure 1: We learn a global metric Q0 to discriminate classes and
preserve global view-specific appearance, as well as class-specific
pose estimation metrics Qcar and Qbus. This joint learning allows
to predict the pose for instances of novel object classes. For exam-
ple, we can estimate the pose of the class bus by utilizing the view
labels for class car, which is its neighbor in the class space.

learning introduced in Parameswaran et al (2010), which pa-
rameterizes the distance between the two points using both
the task-specific metric, and a shared metric among all tasks.
However, in sharp contrast to Parameswaran et al (2010), in
our case the task (pose estimation) depends on a class, and
is therefore unknown. A key strength of metric learning is
that it can generalize to novel tasks. This has been explored
for the case of zero shot class recognition in (Mensink et al.
2013), using a single metric. We, on the other hand, explore
effectively a hierarchy of leaned metrics for zero shot pose
estimation.
Transfer learning and zero-shot recognition: Our method
can also be viewed as a transfer learning approach since it
performs zero-shot pose prediction for a novel class lever-
aging the view-specific appearance of existing classes. The
most dominant method for zero-shot recognition is attribute-
based recognition, where global properties, such as at-
tributes, are used to transfer information from a set of source
classes to target classes (Farhadi et al. 2009, Lampert, Nick-
isch, and Harmeling 2009).

There is not much work on transfer learning or zero-shot
recognition for pose estimation. The most relevant work to
our method is (Chen and Grauman 2014), which presents a
method to infer unseen views of people using tensor com-
pletion. Our method is similar in the sense that we perform
zero-shot pose estimation; however, our method can transfer
the knowledge about view-specific appearance across cate-
gories, while (Chen and Grauman 2014) focused on a single
(person) class.

Metric multi-view object recognition
Traditionally, pose estimation is solved for each class in-
dividually. However, since different classes actually share
similar visual elements that change in the similar ways with
the pose, solving pose estimation problem jointly, consid-
ering all classes, can be beneficial (He, Sigal, and Sclaroff
2014, Zhang et al. 2013). Moreover, learning such shared
elements among classes could potentially allow pose pre-
diction for new classes, for which the viewpoint labels are
not available.

Metric learning for pose estimation
Past work has shown that the instances in different view-
points form a continuous low-dimensional manifold in the
original feature space (Murase and Nayar 1995). Therefore
our goal is to preserve such manifold structure with distance



constraints. More specifically, we want to learn a Maha-
lanobis distance matrix Q, such that a sample has a smaller
distance to another sample in a similar pose, compared to the
distance to a sample that has a very different pose. Given two
points xi,xj 2 RD, the distance between these two points
is defined as:

dQ(xi,xj) = (xi � xj)
TQ(xi � xj). (1)

Given a set of Nc training samples from the class c, Dc =
{(xi,pi)}Nc

i=1, where xi 2 RD is a D-dimensional feature
descriptor for image i and pi 2 RP is a P -dimensional pose
label, the problem of metric learning for pose estimation can
be formulated as following:

min
Qc

X

ijl

⇠+ijl + �tr(Qc), Qc ⌫ 0 (2)

dQc(xi, xj) +m  dQc(xi, xl) + ⇠ijl, (3)
dp(pi, pj)  tl, d

p(pi, pl) � tu

where tr(Qc) is the trace of Qc and Qc ⌫ 0 requires Qc to
be positive semidefinite, ⇠+ = max(⇠, 0), and dp(·, ·) is the
distance in the pose space, specific for the annotations pro-
vided. Further, tl, tu are similarity and dissimilarity thresh-
olds and m is the margin. Since the view manifold is low-
dimensional, it is reasonable to require Qc to be low-rank.
Minimizing the rank is in turn approximated by the nuclear
norm kQck⇤, which is equivalent to tr(Qc), that we mini-
mize in (2), for a positive semidefinite matrix Qc.

Metric learning for joint pose estimation and class
prediction
Training per-class pose estimators has several drawbacks.
First, the performance of the viewpoint/pose estimation
heavily depends on the performance of the classification al-
gorithm when the class is unknown. Second, some classes
may share similar traits in their viewpoint/pose changes,
which is completely ignored by the independent training of
the classifiers.

Therefore, we propose to jointly learn a metric for clas-
sification and pose estimation. Now, the training set D =
{(xi, yi,pi)}Ni=1 contains samples from classes c = 1 . . . C
together with their class labels yi. This problem of joint met-
ric learning is formulated as follows:

min
Q

X

ijl

(1� µ)⇠+ijl +
X

ijl

⇣+ijlµ+ �tr(Q), (4)

dQ(xi, xj) +mc  dQ(xi, xl) + ⇣ijl, (5)
yi = yj , yi 6= yl

dQ(xi, xj) +mv  dQ(xi, xl) + ⇠ijl, (6)
dp(pi, pj)  tl, d

p(pi, pl) � tu,

yi = yj = yl, Q ⌫ 0

where µ 2 [0, 1] defines the trade-off between the classifica-
tion and the pose estimation, mc is the classification margin,
and mv is the view-similarity margin. The relative scale of
mc and mv is crucial for learning. We found through cross
validation, that mv = mc/C gives good results. By formu-
lating the metric learning optimization jointly for all classes,

we ensure that if some classes share a pose metric, this will
be incorporated into the resulting matrix Q.

However, different classes may not share identical pose
metrics. Moreover, the classification task differs signifi-
cantly from the viewpoint estimation task, and therefore the
requirements imposed on the metric by Eq. (5)-(6) can even
be contradictory, when only a single metric Q is learned. We
resolve this issue by introducing a global shared metric Q0

that discriminates classes as well as preserves common man-
ifold for view estimation. We then enable each class to have
its own pose metric Qc, which should account for unique
viewpoint-related variation for the corresponding class c. We
propose the following multi-task formulation:
X

ijl

⇠+ijl(1� µ) +
X

ijl

⇣+ijlµ+ �tr(Q0) +
X

c

�tr(Qc) (7)

dQ0(xi, xj) +mc  dQ0(xi, xl) + ⇠ijl, (8)
yi = yj , yi 6= yl

dQ0+Qc(xi, xj) +mv  dQ0+Qc(xi, xl) + ⇣ijl, (9)
dp(pi, pj)  tl, d

p(pi, pl) � tu,

yi = yj = yl = c, Q0 ⌫ 0, Qc ⌫ 0, c = 1 . . . C

In the above formulation, the pose similarity between two
instances is parametrized by the sum of the global metric
and the per-class metric, Q0 + Qc. The constraints of type
(8) encourage Q0 to push away the samples from different
classes, while the constraints of type (9) require the samples
from the class c to form a manifold with respect to the metric
Q0 +Qc having continuous structure w.r.t. pose.

Optimization
The optimization problems (4)-(6) and (7)-(9) are instances
of semidefinite programming. We use a variant of stochas-
tic projected gradient descend which subsamples active con-
straints. After each update step on matrices Q0, Q1, . . . , Qc

we project them back to the cone of positive semidefinite
matrices, using SVD decomposition. To further speed-up the
optimization process for large-scale datasets optimized gra-
dient computation can be used (Weinberger and Saul 2008).

Pose estimation and class prediction
While training multiple metric is intuitive, using them for
pose estimation is not straightforward. Unlike multi-task
metric concept of Parameswaran et al (2010), where the task
is known at test time, in our case the task (pose estimation)
depends on a class, and is therefore unknown. The key ques-
tion is how to infer the pose label in this formulation. An
intuitive way to predict pose is to first predict a class c ac-
cording to metric Q0 and then use the corresponding metric
Q0+Qc for pose prediction. However, this would introduce
errors in pose prediction whenever the class is incorrectly
predicted. Instead, we produce pose prediction for each class
and then choose the most confident estimate.

Given a set of training triplets D and a set of learned met-
rics Q0, Qc, c = 1 . . . C, for a new sample x⇤, the k nearest
neighbors {xi}i2Ik from the training set are selected using
the set of learned metrics, such that distance to the sample xi



is measured as di = dQ0+Qyi
(x⇤,xi). The final pose predic-

tion p is formed by finding the modes of the pose predictions
pi of the samples coming from the same class, weighted by
the prediction confidence of a single sample d�1

i , and select-
ing the most confident mode; the confidence of the mode is
defined as rp =

P
j2I(p) d

�1
j , where I(p) ⇢ Ik is a subset

of the nearest neighbors contributing to the mode.
Class label prediction is done by performing k nearest

neighbor search using the learned metric Q0, and choos-
ing the weighted mode of their class labels as the final pre-
diction; the confidence for the class c is then computed as
rc =

P
j2I(c) d

�1
j , I(c) = {j : j 2 Ik, yj = c}.

Zero-shot pose prediction

The proposed algorithm for pose estimation can be extended
for pose prediction for the classes without any pose labels.
To do so, we train the model using (7)-(9) (or (4)-(6)) with-
out imposing view-preserving constraints on the classes that
do not have viewpoint labels. Then, for zero-shot pose esti-
mation, we only consider the samples that have pose labels
as potential nearest neighbors.

Since different classes might have different, unaligned,
pose labels, the prediction for a sample from a class with-
out a pose label Cz is formed as a set p̃ = {p̃c 2 RP }c2C ,
where p̃c is the prediction of the class c and C denotes differ-
ent classes found among k nearest neighbors. In the exper-
iments we observed, that only a small subset of all classes
participate in the prediction formation for all samples of the
class Cz .

Detection

The proposed approach can be integrated into existing detec-
tion frameworks. We propose to couple the proposed method
with the pre-trained R-CNN detector (Girshick et al. 2014).
In the experiments, we show that the combined model al-
lows us to improve the performance of the detector and, in
addition, estimate the viewpoint.

Detection using R-CNN detector is performed as follows:
first, object proposals are extracted, using selective search
(Uijlings et al. 2013); then, each proposal is evaluated based
on the pre-trained SVMs, and the detection score sci is com-
puted; as a next step, the most confident object proposals
are chosen, i.e. such that sci > ⌧ , where ⌧ is the detection
threshold; finally, the bounding box regression and the non-
maxima suppression is applied.

We introduce the changes in the detection process by
combining the detection score of the SVMs with the con-
fidence score, produced by our model, thus, re-ranking the
proposals. Assume a proposal i received a detection score
sci from the SVM corresponding to the class c and the confi-
dence rci of the trained model. Then, the confidences for all
object proposals on a single image are normalized to the in-
terval [0, 1] and the final score is computed as (sci�⌧)rci +⌧ .
In all experiments, we use RCNN detector, pre-trained on
the PASCAL dataset.

Experiments
We evaluate our approach on two datasets. To stress that our
approach is independent of the type of labeling provided
as pose annotations (i.e., continuous or discrete labels),
we chose one dataset containing discrete labels (3DOb-
jects (Savarese and Fei-Fei 2007)) and one with continuous
labels (PASCAL3D+ Xiang et al (2014)).

class Acc� Acc✓ Acc(�,✓)

OVM 75.7 57.2 59.8 �
3DOCM 90.53/83.07 80.34/81.86 � �
KNN-VC 95.17 84.94 85.20 71.68
J-VC 97.35 89.92 91.65 80.84
MM-VC 96.14 89.87 91.69 82.79
MMJ-VC 97.36 90.15 91.82 82.00

Table 1: 3DObjects: class recognition and pose estimation ac-
curacy compared with OVM (Bakry and Elgammal 2014) and
3DOCM (Savarese and Fei-Fei 2007) (%)

In all experiments, we use pool-5 Caffe features (Jia et
al. 2014), since they better preserve viewpoint variations,
as verified both by our experiments and by Ghodrati et
al (2014). We first reduce the dimensionality of the fea-
ture space using principal component analysis and project
the 9216-dimensional features into D = 500 dimensional
space. We use k = 50 nearest neighbors in all experiments
to form predictions, where k is found by cross-validation.

We compare our method with the state-of-the-art meth-
ods, as well as provide our baselines to show the advantage
of our final formulation in various tasks. We use the follow-
ing variants of our model for comparison:
KNN-VC: a simple k-nearest neighbors baseline to show
the improvement due to learned metric in comparison to the
original metric in the feature space.
MM-VC: we learn one metric per class for pose, as well as
a separate metric for class prediction.
J-VC: we learn a single joint metric for both class and view-
point prediction, as defined in Eq.(4)-(6).
MMJ-VC: we learn the multi-metric model, described in
Eq.(7)-(9).

We evaluate performance of our method in two main ex-
periments: 1) the fully supervised case; 2) the zero-shot
learning experiment, where we exclude ground truth pose
labels from training for one class and evaluate the perfor-
mance of the model for the same class. We perform this
experiment for all classes. We propose to measure the per-
formance of zero-shot prediction by measuring distance in
the pose space between pairs of samples instead of directly
comparing predicted poses, since the ground truth labeling
might not correspond to the pose labeling induced by the
neighbor classes. Note, that relative pose prediction can be
transformed into the ground truth pose prediction by calcu-
lating the pose relative to fixed samples with known pose
labels.

We define the predicted pose distance between two sam-
ples i and j as follows: first, for each class that participates
in the pose prediction of both samples i and j the distance
dp(p̃c

i , p̃
c
j) in the pose space is computed. Afterwards, the



bicycle car
AP/AVP MPPE AP/AVP MPPE

3D2PM 95.8/� 94.1/� 95.8/� 99.6/�
BnB 95.1/� 94/� 98.2/� 87.9/�
VDPM 91/� 90/� 96/� 89/�
3DCAD 87.0/� �/87.7 94.9/� �/82.6
ours-sep 98.57/72.09 93.0/83.1 99.07/86.61 92.3/90.3
ours-comb 99.06/83.61 96.7/89.5 99.06/88.88 95.5/91.8

Table 2: 3DObjects: detection and pose estimation performance
(AP/AVP/MPPE) of MMJ-VC model, combined with R-CNN de-
tector, where ours-sep denotes the results without object pro-
posal rescoring, and ours-comb denotes the results with rescor-
ing; we compare against 3D2PM (Pepik et al. 2012a), BnB (He
et al (2014)), VDPM (Lopez-Sastre et al (2011)), 3DCAD (Schels
et al (2012))

Figure 2: Zero-shot pose estimation examples: the first column
shows the input image (denoted by the red boundary) and the re-
maining columns show samples selected for pose prediction.

predicted pose distance is averaged across all the classes:

d(p̃i, p̃j) =
1

|Cact|
X

c2Cact

dp(p̃c
i , p̃

c
j), (10)

where p̃c
i corresponds to the prediction of the class c and

Cact = Ci\Cj is the set of the classes, that formed prediction
for for both samples i and j; if two samples have a non-
intersecting set of predicting classes, d(p̃i, p̃j) is set equal to
the maximal distance in the pose space.

3DObjects dataset
This dataset contains 10 object classes, where each class
has 10 instances that are presented in different views and
scales. In total, 3 scales are used; the view space is dis-
cretized by azimuth angle � into 8 intervals, and by elevation
angle ✓ into 3 intervals. The pose vector is then defined as
p = (�, ✓)T 2 N2.

We define the distance in the pose space dp(pi,pj) =
min(8� |�i � �j |, |�i � �j |) + |✓i � ✓j |, where � 2 1 . . . 8
denotes the azimuth interval number and ✓ 2 1 . . . 3 denotes
the elevation interval number; we set tl = 0 and tu = 1.
We following the protocol of (Savarese and Fei-Fei 2007)
in our experiments and measure accuracy for azimuth Acc�,
elevation Acc✓ and total accuracy Acc(�,✓).
Fully supervised case: In Table 1, the results for pose and
class recognition are presented. First, we outperform both
prior works, (Savarese and Fei-Fei 2007) and (Bakry and
Elgammal 2014), significantly. Second, the learned metric
outperforms a simple KNN-VC baseline both in recogni-
tion and in pose estimation. Furthermore, both MM-VC and

class MedError(�) Acc⇡/6

KNN-VC 61.70/62.72 35.74/37.69 49.76/50.76
J-VC 71.49/82.23 31.93/31.54 51.31/55.05
MM-VC 70.35/85.12 36.61/38.48 48.55/47.35
MMJ-VC 71.75/83.06 32.81/29.67 51.84/55.20

Table 5: PASCAL3D+: class recognition and pose estimation ac-
curacy (the first number shows the results on the whole dataset,
while the second - in case of non-truncated and non-occluded im-
ages only).

MMJ-VC outperform J-VC for pose prediction. This val-
idates the importance of separate class-specific and pose-
specific metrics employed in MM-VC and MMJ-VC, as
compared to J-VC that has a single metric for both tasks.
To compare our results with the other published works, we
also provide detection results for two classes (car and byci-
cle) in Table 2. We outperform most of the previous works
(Pepik et al. 2012a, He, Sigal, and Sclaroff 2014, López-
Sastre, Tuytelaars, and Savarese 2011, Schels, Liebelt, and
Lienhart 2012), both for detection and pose estimation for
all baselines, and perform on par with (Pepik et al. 2012a)
on car class. Note the increase of in both AP and AVP met-
rics due to the object proposals rescoring. Our results are
slightly worse then the ones reported in (Pepik et al. 2012b),
however, the method presented in (Pepik et al. 2012b) re-
quires 3D geometric CAD models for each class and large
set of synthetic data for training, while our model does not.
Zero-shot pose: We evaluate the performance in the zero-
shot pose estimation experiment using the relative pose
given by Eq. (10). The results are presented in Table 3. Since
objects in 3DObject dataset are very distinct, only general
features, such as rectangular form, can be transferred be-
tween categories. However, we still are able to predict the
pose for the objects from the novel category about 3 times
better than random. Our full multi-metric model (MMJ-VC)
gives the best performance, since it contains both the joint
multi-task learning objective and combination of shared and
class-specific metrics. Notably, MM-VC performs slightly
worse than simple KNN-VC baseline, which points to the
key importance of joint multi-task learning for zero-shot pre-
diction. The visual results for zero-shot pose estimation are
presented in Figure 2, where the samples for zero-shot pre-
diction and the first three nearest neighbors with respect to
the learned model are shown (for MMJ-VC model). The way
the zero-shot prediction is formed makes pose estimation ro-
bust against unaligned pose labels.

PASCAL3D+ dataset
The dataset contains images of 12 different categories from
PASCAL VOC 2012 training and validation sets. The an-
notation include continuous labels of the azimuth and ele-
vation angles, as well as information about occlusion and
truncation of the objects. Following (Xiang, Mottaghi, and
Savarese 2014), we train the model on the images from the
training set and test on the images from the validation set.
For PASCAL3D+ dataset, we use the distance in the pose
space dp(p1,p2), as well as two performance metrics, pro-
posed in (Tulsiani and Malik 2015): first, we estimate me-
dian of the distance in the pose space dp(ppred,pgt) (we



bicycle car cell iron mouse shoe stapler toaster mean
KNN-VC 47.0/17.1 47.3/25.0 45.6/20.7 45.6/19.1 43.2/20.8 48.5/22.7 47.2/20.8 41.9/19.6 45.7/20.7
J-VC 48.4/20.5 44.6/23.5 46.3/22.5 45.5/20.6 44.9/23.9 46.1/25.2 46.4/22.8 42.0/19.2 45.5/22.3
MM-VC 47.3/19.7 37.9/19.9 45.5/21.6 44.7/19.2 43.1/21.0 44.6/24.9 45.8/21.8 40.1/18.0 43.6/20.7
MMJ-VC 49.0/20.6 45.6/24.1 45.7/22.2 46.3/20.8 45.1/23.2 48.1/26.8 46.5/22.5 43.3/20.3 46.2/22.6

Table 3: 3DObjects: zero-shot pose estimation accuracy (Acc�/Acc(�,✓)).

aero bike boat bottle bus car chair table mbike sofa train tv mean
KNN-VC 37.75 39.98 36.55 29.34 31.17 33.14 39.68 48.12 39.90 48.37 28.40 47.71 38.34
J-VC 35.65 36.62 35.57 57.72 33.71 33.03 37.08 49.90 36.77 55.07 34.66 55.13 41.74
MM-VC 36.60 40.30 35.34 37.44 40.71 33.97 39.43 48.07 35.16 51.09 36.22 49.88 40.35
MMJ-VC 34.42 37.79 36.66 56.42 36.11 32.47 36.32 49.81 37.81 54.32 38.49 57.40 42.33

Table 4: PASCAL3D+: zero-shot pose estimation accuracy (Acc⇡/6) for the whole dataset.

denote this metric as MedErr); second, we use a discrete
accuracy metric Acc✓, that measures the fraction of the sam-
ples, for which dp(ppred,pgt) < ✓. During training, we set
tl and tu to 5% and 95% quantiles of the per class pose dis-
tances distribution.
Fully supervised case: The results are presented in Table
5. As in the previous experiment, J-VC and MMJ-VC base-
lines perform better than KNN prediction, however, MM-
VC baseline performs poorly this time. MMJ-VC baseline
slightly outperforms J-VC baseline. Note, that the perfor-
mance drop between the case of fully visible subset of PAS-
CAL3D+ dataset and the whole dataset is not as great as ex-
pected. This might be because such occluded instances are
present in both train and test sets, since most of the occlu-
sions in the datasets are typical for a given object category.
Therefore, we are still able to estimate the pose correctly. We
do not directly compare our results with the ones presented
in (Tulsiani and Malik 2015), since we use generic object
features from (Jia et al. 2014), while in their work they use
object features fine-tuned for the particular set of classes in
the dataset, as well as for pose estimation, making compari-
son unfair. We provide the comparison of MMJ-VC method

aero boat mean
VDPM 40.0/34.6 3.0/1.5 26.8/19.5
3DDPM 41.5/37.4 0.5/0.3 27.0/23.8
ours 71.1/53.1 32.3/12.2 44.7/33.4
VDPM 39.8/23.4 5.8/1.0 29.9/18.7
3DDPM 40.5/28.6 0.5/0.2 28.3/21.5
ours 71.1/32.8 32.3/6.3 44.7/24.7

Table 6: PASCAL3D+: detection and pose estimation perfor-
mance of our model (MMJ-VC + RCNN), compared against
VDPM (Xiang, Mottaghi, and Savarese 2014) and 3DDPM (Pepik
et al. 2012b) using (AP/AVP) with 4 views (upper Table), 8 views
(lower Table). We do not provide results with and without rescor-
ing, since the detector is already trained on the PASCAL dataset.

in the detection task with two baselines (Xiang, Mottaghi,
and Savarese 2014, Pepik et al. 2012b) (for (Pepik et al.
2012b), we use the results reported in the (Xiang, Mottaghi,
and Savarese 2014))) using AP and AVP metric. The results
are presented in Table 6. Note, our method outperforms on
average both (Xiang, Mottaghi, and Savarese 2014, Pepik et
al. 2012b) and (Pepik et al. 2012b), although both of them
are discriminative methods, and (Pepik et al. 2012b) requires
3D CAD models for each class, while our method is not ex-

plicitly aware of 3D geometry of the objects.

Figure 3: Zero-shot pose estimation examples on the PASCAL
3D+ dataset; top row: test samples from class bus (with red bound-
ary) and the nearest neighbors retrieved; bottom row: nearest
neighbors found for the sample from the class motorbike.

Zero-shot pose: We achieve higher improvement compared
to the results we have on the 3DObjects dataset. We at-
tribute this to the fact, that PASCAL3D+ dataset contains
many categories that have similar appearance variations due
to viewpoint change, such as bike and motorbike or car and
bus. MMJ-VC baseline outperforms all other baselines in
that case as well, while MM-VC baseline, which models
view-similarity separately, performs poorly as on 3DObjects
dataset. Figure 3 shows examples of the nearest neighbors
selected for zero-shot pose prediction.

Conclusion
We have presented a method for simultaneous pose estima-
tion and class prediction using learned metrics. Our met-
ric learning-based approach encodes the pose information as
relative distances between points, and can handle both dis-
crete and continuous labels unlike existing classification or
regression-based solutions. Further, it can generalize to the
pose estimation task for a novel class, at almost no cost. By
jointly training the classification metric with pose metric, we
are able to learn shared visual components across categories
for class separation and model view-specific appearance. We
have validated our method on two datasets, and have shown
that jointly learned metric outperforms separately learned
metrics for the fully supervised pose estimation as well as
generalizes pose estimates for a novel category without pose
labels. Furthermore, we showed the multi-task joint formu-
lation further outperforms a single-metric formulation (es-
pecially for zero-shot).
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