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Abstract

The methodology for finding the same individual in a net-

work of cameras must deal with significant changes in ap-

pearance caused by variations in illumination, viewing an-

gle and a person’s pose. Re-identification requires solving

two fundamental problems: (1) determining a distance mea-

sure between features extracted from different cameras that

copes with illumination changes (metric learning); and (2)

ensuring that matched features refer to the same body part

(correspondence). Most metric learning approaches focus

on finding a robust distance measure between bounding box

images, neglecting the alignment aspects. In this paper,

we propose to learn appearance measures for patches that

are combined using a spring model for addressing the cor-

respondence problem. We validated our approach on the

VIPeR, i-LIDS and CUHK01 datasets achieving new state

of the art performance.

1. Introduction
Person re-identification is the problem of recognizing the

same individual across a network of cameras. In a real-
world scenario, the transition time between cameras may
significantly decrease the search space, but temporal infor-
mation alone is not usually sufficient to solve the problem.
As a result, visual appearance models have received a lot
attention in computer vision research [3, 19, 20, 21, 22, 25,
27]. The underlying challenge for visual appearance is that
the models must work under significant appearance changes
caused by variations in illumination, viewing angle and a
person’s pose.

Metric learning approaches often achieve the best per-
formance in re-identification. These methods learn a dis-
tance function between features from different cameras
such that relevant dimensions are emphasized while irrel-
evant ones are discarded. Many metric learning approaches
[6, 14, 18] divide a bounding box pedestrian image into a
fixed grid of regions and extract descriptors which are then
concatenated into a high-dimensional feature vector. After-

Similarity=0.5 Similarity=0.8

Input Bounding Box ML DPML

Figure 1: Full bounding box metric learning vs. deformable
patch metric learning (DPML). The corresponding patches
in the grid (highlighted in red) do not correspond to the
same body part because of the pose change. Information
from such misaligned features might be lost during the met-
ric learning step. Instead, our DPML deforms to maximize
similarity using metrics learned on a patch level.

wards, dimensionality reduction is applied, and then met-
ric learning is performed on the reduced subspace of dif-
ferences between feature vectors. To avoid overfitting, the
dimensionality must be significantly reduced. In practice,
the subspace dimensionality is about three orders of magni-
tude smaller than the original. Such strong dimensionality
reduction might result in the loss of discriminative informa-
tion. Additionally, features extracted on a fixed grid (see
Fig. 1), may not correspond even though it is the same per-
son (e.g. due to a pose change). Metric learning is unable to
recover this lost information.

In this paper, instead of learning a metric for concate-
nated features extracted from full bounding boxes from dif-
ferent cameras, we propose to learn metrics for 2D patches.
Furthermore, we do not assume the patches must be located
on a fixed grid. Our model allows patches to perturb their
location when computing similarity between two images
(see Fig. 1). This model is inspired from part-based object
detection [8, 26], which decomposes the appearance model
into local templates with geometric constraints (conceptu-
alized as springs). Our contributions are:



• We propose to learn metrics locally, on feature vectors
extracted from patches. These metrics can be com-
bined into a unified distance measure.

• We introduce a deformable patch-based model for
accommodating pose changes and occlusions. This
model combines an appearance term with a deforma-
tion cost that controls relative placement of patches.

Our experiments illustrate the merits of patch-based com-
parison and achieve state of the art performance on multiple
data sets.

2. Related work
Person re-identification approaches can be divided into

two groups: feature modeling [2, 7] designs descriptors
(usually handcrafted) which are robust to changes in imag-
ing conditions, and metric learning [1, 6, 17, 14, 18, 29]
searches for effective distance functions to compare features
from different cameras. Robust features can be modeled
by adopting perceptual principles of symmetry and asym-
metry of the human body [7]. The correspondence prob-
lem can be approached by locating body parts [2, 4] and
extracting local descriptors (color histograms [4], color in-
variants [15], covariances [2], CNN [21]). However, to
find a proper descriptor, we need to look for a trade-off be-
tween its discriminative power and invariance between cam-
eras. This task can be considered a metric learning problem
that maximizes inter-class variation while minimizing intra-
class variation.

Many different machine learning algorithms have been
considered for learning a robust similarity function. Gray et

al. employed Adaboost for feature selection and weighting
[10], Prosser et al. defined the person re-identification as a
ranking problem and used an ensemble of RankSVMs [23].
Recently features learned from deep convolution neural net-
works have been investigated [1, 17].

However, the most common choice for learning a met-
ric remains the family of Mahalanobis distance functions.
These include Large Margin Nearest Neighbor Learn-
ing (LMNN) [24], Information Theoretic Metric Learn-
ing (ITML) [5] and Logistic Discriminant Metric Learning
(LDML) [11]. These methods usually aim at improving k-
nn classification by iteratively adapting the metric. In con-
trast to these iterative methods, Köstinger [14] proposed the
KISS metric which uses a statistical inference based on a
likelihood-ratio test of two Gaussian distributions modeling
positive and negative pairwise differences between features.
Owing to its effectiveness and efficiency, the KISS metric is
a popular baseline that has been extended to linear [19, 22]
and non-linear [21, 25] subspace embeddings.

All of these approaches learn a Mahalanobis distance
function for feature vectors extracted from bounding box
images. Instead, we propose to learn dissimilarity functions

for patches within bounding boxes, and then combine their
scores into a robust distance measure. We show that our
approach has clear advantages over existing algorithms.

3. Method
The Mahalanobis metric measures the squared distance be-
tween xi and xj

d2(xi,xj) = (xi � xj)
TM(xi � xj), (1)

where xi and xj are feature vectors extracted from bound-
ing boxes taken from different cameras and M is a matrix
encoding the basis for the comparison. M is usually learned
in two stages: dimensionality reduction is first applied on xi

and xj (e.g. principle component analysis - PCA), and then
metric learning (e.g. KISS metric [14]) is performed on the
reduced subspace. To avoid overfitting, the dimensionality
must be significantly reduced to keep the number of free
parameters low [12, 19]. In practice, xi and xj are high di-
mensional feature vectors and their reduced dimensionality
is usually about three orders of magnitude smaller than the
original [14, 19, 21]. Such strong dimensionality reduction
might lose discriminative information, especially in case of
misaligned features in xi and xj (e.g. highlighted patches
in Fig. 1).

We propose to learn a metric for matching patches within
the bounding box. We perform dimensionality reduction on
features extracted from each patch. The reduced dimension-
ality is usually only one order of magnitude smaller than the
original one, thus keeping more information (see Section 4).

3.1. Patch-based Metric Learning (PML)
We divide bounding box i into a dense grid with overlap-
ping rectangular patches. From each patch location k, color
and texture descriptors (e.g. color and gradient histograms)
are extracted and concatenated into the patch feature vec-
tor pk

i . We represent bounding box image i as an ordered
set of patch features Xi = {p1

i ,p
2
i , . . . ,p

K
i }, where K is

the number of patches. Usually in standard metric learning
approaches, these patch descriptors are concatenated into
a single high dimensional feature vector [14, 20, 21, 22].
Instead, we learn a dissimilarity function for feature vectors
extracted from patches. We define the dissimilarity measure
as

�(pk
i ,p

k
j ) = (pk

i � pk
j )

TM(k)(pk
i � pk

j ), (2)

where pk
i and pk

j are the feature vectors extracted from
patches at location k in bounding boxes i and j, from dif-
ferent cameras. Although, it is possible to learn one metric
for each patch location k, this might be too many degrees
of freedom. In practice, multiple patch locations might
share a common metric, and in the extreme case a single M
could be learned for all patch locations. We investigated re-
identification performance with different numbers of patch



metrics M (see Section 4.2.2) and found that in some cases
multiple M’s might perform better than a single M. Re-
gions with statistically different amounts of background
noise should have different metrics (e.g. patches close to the
head contain more background noise than patches close to
the torso). However, we also found that the recognition per-
formance is a function of available training data (see Sec-
tion 4.2.2), which limits the number of patch metrics that
can be learned efficiently.
Learning M(k): Given pairs of sample bounding boxes
(i, j) we introduce the space of pairwise differences pk

ij =

pk
i � pk

j and partition the training data into pk+
ij when i

and j are bounding boxes containing the same person and
pk�
ij otherwise. Note that for learning we use differences on

patches from the same location k.
To learn M(k) we follow Köstinger [14] and assume a

zero mean Gaussian structure on difference space and em-
ploy a log likelihood ratio test. This results in

M(k) = ⌃�1
k+ � ⌃�1

k�, (3)

where⌃k+ and⌃k� are the covariance matrices of pk+
ij and

pk�
ij respectively

⌃k+ =
P

(pk+
ij )(pk+

ij )T , (4)

⌃k� =
P

(pk�
ij )(pk�

ij )T . (5)

Our dissimilarity score between patches is

�(pk
i ,p

k
j ) = (pk

ij)
T (⌃�1

k+ � ⌃�1
k�)(pk

ij). (6)

To compute the dissimilarity between two bounding boxes
i and j, we combine patch dissimilarity scores by summing
over all patches

PK
k=1 �(pk

i ,p
k
j ). This is equivalent to

learning a block diagonal matrix

⇥
p1
ij ,p

2
ij , . . . ,p

K
ij

⇤

2

6664

M1 0 . . . 0
0 M2 . . . 0
...

...
. . . 0

0 0 . . . MK

3

7775

2

6664

p1
ij

p2
ij
...

pK
ij

3

7775
(7)

where all M(k) are learned independently. We refer to this
formulation as PML.

A pair of bounding boxes corresponds to a single training
example in the standard approach. Breaking a bounding box
into a set of patches increases the amount of training data if
a reduced number of M is learned (e.g. some locations k
share the same metric). When a single M is learned, the
amount of training data increases by combining pk+

ij for all
K locations into set p+

ij =
PK

k=1 |p
k+
ij |. In experiments we

show that this can significantly boost performance when the
training dataset is small (e.g. iLIDS dataset).

3.2. Deformable Model (DPML)

Pose changes and different camera viewpoints make re-
identification more difficult. To overcome this issue we
allow patches in one bounding box to perturb their loca-
tions (deform) when matching to another bounding box. We
employ a model which approximates continuous non-affine
warps by translating 2D templates [8, 26] (see Fig. 1). We
use a spring model to limit the displacement of patches.

We define the deformable dissimilarity score for match-
ing the patch at location k in bounding box i with bounding
box j as

 (pk
i , j) = min

l

⇥
�(pk

i ,p
l
j) + ↵k�(k, l)

⇤
, (8)

where patch feature pl
j is extracted from bounding box j at

location l.

Appearance term �(pk
i ,p

l
j) computes the feature dissim-

ilarity between patches and is learned by employing our
previously introduced PML (see Section 3.1).

Deformation cost ↵k�(k, l) refers to a spring model that
controls the relative placement of patches k and l. �(k, l)
is the squared distance between the patch locations. ↵k en-
codes the rigidity of the spring: ↵k = 1 corresponds to
a rigid model, while ↵k = 0 allows a patch to change its
location freely.

We combine the deformable dissimilarity scores
 (pk

i , j) into a unified dissimilarity measure

 (i, j) =
KX

k=1

wk (pk
i , j)

= hw, iji, (9)

where w is a vector of weights and  ij corresponds to a
vector of patch dissimilarity scores.

Learning ↵k and w: Similarly to [21], we define the op-
timization problem as a relative distance comparison of
triplets {i, j, z} such that  (i, z) >  (i, j) for all i, j, z;
where i and j correspond to bounding boxes extracted from
different cameras containing the same person, and i and z
are bounding boxes from different cameras containing dif-
ferent people. Unfortunately, Eq. 8 is non-convex and we
can not guarantee avoiding local minima. In practice, we
use a limited number of unique spring constants ↵k and
apply two-step optimization. First, we optimize ↵k with
w = 1, by performing exhaustive grid search (see Sec-
tion 4.3) while maximizing Rank-1 recognition rate. Sec-
ond, we fix ↵k and determine the best w using structural
SVMs [13]. This approach is referred to as DPML.



Figure 2: Sample images from VIPeR dataset. Top and
bottom lines correspond to images from different cameras.
Columns illustrate the same person.

4. Experiments
We carry out experiments on three challenging datasets:
VIPeR [9], i-LIDS [28] and CUHK01 [16]. The results
are analyzed in terms of recognition rate, using the cumu-

lative matching characteristic (CMC) [9] curve. The CMC
curve represents the expectation of finding the correct match
in the top r matches. The curve can be characterized by a
scalar value computed by normalizing the area under the
curve referred to as nAUC value.

Section 4.1 describes the benchmark datasets used in
the experiments. We explore our rigid patch metric model
(PML) and its parameters in Section 4.2, then the de-
formable patch model (DPML) in Section 4.3. Finally, in
Section 4.4, we compare our performance to other state of
the art methods.

4.1. Datasets
VIPeR [9] is one of the most popular person re-
identification datasets. It contains 632 image pairs of
pedestrians captured by two outdoor cameras. VIPeR
images contain large variations in lighting conditions,
background, viewpoint, and image quality (see Fig. 2).
Each bounding box is cropped and scaled to be 128 ⇥ 48
pixels. We follow the common evaluation protocol for
this database: randomly dividing 632 image pairs into 316
image pairs for training and 316 image pairs for testing.
We repeat this procedure 10 times and compute the average
CMC curves for obtaining reliable statistics.

i-LIDS [28] consists of 119 individuals with 476 images.
This dataset is very challenging since there are many
occlusions. Often only the top part of the person is visible
and usually there is a significant scale or viewpoint change
as well (see Fig. 3). We follow the evaluation protocol of
[21]: the dataset is randomly divided into 60 image pairs
used for training and the remaining 59 image pairs are
used for testing. This procedure is repeated 10 times for
obtaining averaged CMC curves.

Figure 3: Sample images from i-LIDS dataset. Top and
bottom lines correspond to images from different cameras.
Columns illustrate the same person.

Figure 4: Sample images from CUHK01 dataset. Top and
bottom lines correspond to images from different cameras.
Columns illustrate the same person.

CUHK01 [16] contains 971 persons captured with two
cameras. For each person, 2 images for each camera are
provided. The images in this dataset are better quality and
higher resolution than in the two previous datasets. Each
bounding box is scaled to be 160 ⇥ 60 pixels. The first
camera captures the side view of pedestrians and the sec-
ond camera captures the frontal view or the back view (see
Fig. 4). We follow the single shot setting: randomly select-
ing 971 image pairs and randomly dividing it into 486 image
pairs for training and 485 image pairs for testing. We re-
peat this procedure 10 times for computing averaged CMC
curves.

4.2. Rigid Patch Metric Learning

In this section, we first compare our rigid patch model
(PML) to the standard full bounding box approach (BBOX).
BBOX is equivalent to the method presented in [14].

Each bounding box of size w ⇥ h is divided into a grid
of K = 60 overlapping patches of size w

4 ⇥ w
2 and a 20⇥ 3

layout. Details of how a feature vector is extracted for each
patch location are discussed in Section 4.2.1.

For the full bounding box case, we concatenate the ex-
tracted patch feature vectors into a high dimensional feature
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Figure 5: Performance comparison of Patch based Metric Learning (PML) and Deformable Patch based Metric Learning
(DPML) vs. full bounding box metric learning (BBOX). Rank-1 identification rates as well as nAUC values provided in
brackets are shown in the legend next to the method name.

vector. PCA is applied to obtain a 62-dimensional feature
space (where the optimal dimensionality is found by cross-
validation). Then, the KISS metric [14] is learned in the 62-
dimensional PCA subspace. For PML, instead of learning a
metric for the concatenated feature vector, we learn metrics
for patch features. In this way, we avoid undesirable com-
pression. The dimensionality of the patch feature vector is
reduced by PCA to 35 (also found by cross-validation) and
metrics are learned independently for each patch location.
Fig. 5 illustrates the comparison on three datasets. It is ap-
parent that PML significantly improves the re-identification
performance by keeping a higher number of degrees of free-
dom (35 ⇥ 60) when learning the dissimilarity function.

4.2.1 Patch Feature Vector

It is common practice in person re-identification to com-
bine color and texture descriptors for describing an image.
We evaluated the performance of different combinations of
representations, including Lab, RGB and HSV histograms,
each with 30 bins per channel. Texture information was
captured by color SIFT, which is the SIFT descriptor ex-
tracted for each Lab channel and then concatenated. Fig. 6
illustrates the averaged CMC curves for VIPeR data set.
The most informative color space is Lab, and the best per-
formance is achieved by combining Lab, HSV and color
SIFT. We use this representation in all experiments.

4.2.2 Patch Metrics

As mentioned earlier, our formulation allows one M to be
learned per patch. In practice, there may be insufficient
training data for this many degrees of freedom. We eval-
uate two extremes: learning 60 independent metrics (one
per patch) and learning a single metric for all 60 patches
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Figure 6: Performance comparison of different patch de-
scriptors for VIPeR dataset.

(see Fig. 7). The results indicate that multiple metrics lead
to significantly better recognition accuracy.

To understand the variability in the learned metrics, we
setup the following experiment: learn a metric for a par-
ticular location k, and then apply this metric to compute
dissimilarity scores for all other patch locations. We plot
nAUC values w.r.t. to the location of the learned metric in
Fig. 8(a). It is apparent that metrics learned at different lo-
cations yield different performances. Surprisingly, higher
performance is obtained by metrics learned on patches at
lower locations within the bounding box (corresponding to
leg regions). We believe that it is due to significant number
of images in the VIPeR dataset having dark and cluttered
backgrounds in the upper regions (see the last 3 top images
in Fig. 2). Lower parts of the bounding boxes usually have
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more coherent background from sidewalks.
Additionally, we cluster patch locations spatially using

hierarchical clustering (bottom-up), where similarity be-
tween regions is computed using nAUC values. Fig. 8(b)
illustrates clustering results w.r.t. to the number of clusters.
Next, we learn metrics for each cluster of patch locations.
These metrics are then used for computing patch similar-
ity in corresponding image regions. Recall from Fig. 7 that
the best performance was achieved with m = 60. In this
circumstance, there appears to be sufficient data to train an
independent metric for each patch location. We test this hy-
pothesis by reducing the amount of training data and evalu-
ating the optimal number of patch metrics when fewer train-
ing examples are available. Fig. 9 illustrates that the patch-
based approach achieves high performance much faster than
full bounding box metric learning. Interestingly, for a small
number of positive pairs (less than 100), a reduced num-
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Figure 6: Sample images from VIPeR dataset. Top and
bottom lines correspond to images from different cameras.
Columns illustrate the same person.

the performance of learning a single metric for all patches
with the performance of learning multiple metrics, one per
each patch location (see figure 4 and compare cases m = 1
and m = 60, respectively). The result clearly indicates that
using multiple metrics leads to significantly better recogni-
tion accuracy.

To explore variability in learned metrics accordingly to
their locations, we set the following experiment. Learn a
metric using patches from a particular location and apply
this metric to compute dissimilarity between all patches.
We plot nAUC values w.r.t. to the location of learned met-
ric in figure 5 (the first image from the left). It is appar-
ent that metrics learned at different location yield different
performance. Surprisingly, the higher performance is ob-
tained by metrics learned on patches at the lower locations
that correspond to leg regions. We believe that it is due to
significant number of images in VIPeR dataset having dark
and cluttered background in top regions (see the last 3 top
images in figure 6), while bottom parts usually have more
coherent background coming from sidewalk.

Further, to study the number or metrics m, we cluster
patch locations using hierarchical clustering (bottom-up),
where similarity between regions is computed using nAUC
values. Figure 5 illustrates clustering results w.r.t. to the
number of clusters (m corresponds to the number of metrics
as well as to the number of clusters). Next, we learn m met-
rics using patches belonging to particular clusters. These
metrics are then used for computing patch similarity in cor-
responding image regions. As shown in figure 4 the best
performance is achieved by m = 60. TODO: comment.

5.1.4 Performance w.r.t. the amount of training data

We carry out experiments to show the evolution of the per-
formance with the number of training image pairs. In this
experiment we were training models on different number
of positive pairs from a training set and testing on 316
pairs from a testing set. Figure 8 illustrates that the patch-
based approach achieves high performance much quicker
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than full-image based metric learning. Interestingly, for a
small number of positive pairs, the lower m, the better per-
formance is achieved. This might be explained by the fact
that the lower m, the more patches are used for learning
particular metrics.

5.1.5 Learning the deformation cost

We decrease the number of parameters ↵ to 2 parameters
(↵1, ↵2) that are assigned to patch locations obtained by hi-
erarchical clustering with the number of clusters m = 2
(figure 5, m = 2). TODO

5.2. Comparison with state of the art
Baseline - KISSME - with small pc

Baseline - KISSME - with crossvalidation ( 62 pc)
XQDA[17] Kernel-based [24]

Ours - p, PCA, metric learning, pooling

5

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

WACV
#****

WACV
#****

WACV 2016 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 6: Sample images from VIPeR dataset. Top and
bottom lines correspond to images from different cameras.
Columns illustrate the same person.

the performance of learning a single metric for all patches
with the performance of learning multiple metrics, one per
each patch location (see figure 4 and compare cases m = 1
and m = 60, respectively). The result clearly indicates that
using multiple metrics leads to significantly better recogni-
tion accuracy.

To explore variability in learned metrics accordingly to
their locations, we set the following experiment. Learn a
metric using patches from a particular location and apply
this metric to compute dissimilarity between all patches.
We plot nAUC values w.r.t. to the location of learned met-
ric in figure 5 (the first image from the left). It is appar-
ent that metrics learned at different location yield different
performance. Surprisingly, the higher performance is ob-
tained by metrics learned on patches at the lower locations
that correspond to leg regions. We believe that it is due to
significant number of images in VIPeR dataset having dark
and cluttered background in top regions (see the last 3 top
images in figure 6), while bottom parts usually have more
coherent background coming from sidewalk.

Further, to study the number or metrics m, we cluster
patch locations using hierarchical clustering (bottom-up),
where similarity between regions is computed using nAUC
values. Figure 5 illustrates clustering results w.r.t. to the
number of clusters (m corresponds to the number of metrics
as well as to the number of clusters). Next, we learn m met-
rics using patches belonging to particular clusters. These
metrics are then used for computing patch similarity in cor-
responding image regions. As shown in figure 4 the best
performance is achieved by m = 60. TODO: comment.

5.1.4 Performance w.r.t. the amount of training data

We carry out experiments to show the evolution of the per-
formance with the number of training image pairs. In this
experiment we were training models on different number
of positive pairs from a training set and testing on 316
pairs from a testing set. Figure 8 illustrates that the patch-
based approach achieves high performance much quicker
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than full-image based metric learning. Interestingly, for a
small number of positive pairs, the lower m, the better per-
formance is achieved. This might be explained by the fact
that the lower m, the more patches are used for learning
particular metrics.

5.1.5 Learning the deformation cost

We decrease the number of parameters ↵ to 2 parameters
(↵1, ↵2) that are assigned to patch locations obtained by hi-
erarchical clustering with the number of clusters m = 2
(figure 5, m = 2). TODO
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Ours - p, PCA, metric learning, pooling

5

0
0

20

20

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

WACV
#****

WACV
#****

WACV 2016 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 6: Sample images from VIPeR dataset. Top and
bottom lines correspond to images from different cameras.
Columns illustrate the same person.

the performance of learning a single metric for all patches
with the performance of learning multiple metrics, one per
each patch location (see figure 4 and compare cases m = 1
and m = 60, respectively). The result clearly indicates that
using multiple metrics leads to significantly better recogni-
tion accuracy.

To explore variability in learned metrics accordingly to
their locations, we set the following experiment. Learn a
metric using patches from a particular location and apply
this metric to compute dissimilarity between all patches.
We plot nAUC values w.r.t. to the location of learned met-
ric in figure 5 (the first image from the left). It is appar-
ent that metrics learned at different location yield different
performance. Surprisingly, the higher performance is ob-
tained by metrics learned on patches at the lower locations
that correspond to leg regions. We believe that it is due to
significant number of images in VIPeR dataset having dark
and cluttered background in top regions (see the last 3 top
images in figure 6), while bottom parts usually have more
coherent background coming from sidewalk.

Further, to study the number or metrics m, we cluster
patch locations using hierarchical clustering (bottom-up),
where similarity between regions is computed using nAUC
values. Figure 5 illustrates clustering results w.r.t. to the
number of clusters (m corresponds to the number of metrics
as well as to the number of clusters). Next, we learn m met-
rics using patches belonging to particular clusters. These
metrics are then used for computing patch similarity in cor-
responding image regions. As shown in figure 4 the best
performance is achieved by m = 60. TODO: comment.

5.1.4 Performance w.r.t. the amount of training data

We carry out experiments to show the evolution of the per-
formance with the number of training image pairs. In this
experiment we were training models on different number
of positive pairs from a training set and testing on 316
pairs from a testing set. Figure 8 illustrates that the patch-
based approach achieves high performance much quicker

Number of positive pairs
100 150 200 250 300

R
a

n
k-

1
 r

e
-i
d

e
n

tif
ic

a
tio

n
 r

a
te

0

5

10

15

20

25

30

35
VIPeR

full image
m=1
m=2
m=6
m=13
m=60

Figure 7: TODO

0 20

0 

20 0.15

0.2

0.25

0.3

0.35

0.4

Figure 8: TODO

than full-image based metric learning. Interestingly, for a
small number of positive pairs, the lower m, the better per-
formance is achieved. This might be explained by the fact
that the lower m, the more patches are used for learning
particular metrics.

5.1.5 Learning the deformation cost

We decrease the number of parameters ↵ to 2 parameters
(↵1, ↵2) that are assigned to patch locations obtained by hi-
erarchical clustering with the number of clusters m = 2
(figure 5, m = 2). TODO
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Figure 6: Sample images from VIPeR dataset. Top and
bottom lines correspond to images from different cameras.
Columns illustrate the same person.

the performance of learning a single metric for all patches
with the performance of learning multiple metrics, one per
each patch location (see figure 4 and compare cases m = 1
and m = 60, respectively). The result clearly indicates that
using multiple metrics leads to significantly better recogni-
tion accuracy.

To explore variability in learned metrics accordingly to
their locations, we set the following experiment. Learn a
metric using patches from a particular location and apply
this metric to compute dissimilarity between all patches.
We plot nAUC values w.r.t. to the location of learned met-
ric in figure 5 (the first image from the left). It is appar-
ent that metrics learned at different location yield different
performance. Surprisingly, the higher performance is ob-
tained by metrics learned on patches at the lower locations
that correspond to leg regions. We believe that it is due to
significant number of images in VIPeR dataset having dark
and cluttered background in top regions (see the last 3 top
images in figure 6), while bottom parts usually have more
coherent background coming from sidewalk.

Further, to study the number or metrics m, we cluster
patch locations using hierarchical clustering (bottom-up),
where similarity between regions is computed using nAUC
values. Figure 5 illustrates clustering results w.r.t. to the
number of clusters (m corresponds to the number of metrics
as well as to the number of clusters). Next, we learn m met-
rics using patches belonging to particular clusters. These
metrics are then used for computing patch similarity in cor-
responding image regions. As shown in figure 4 the best
performance is achieved by m = 60. TODO: comment.

5.1.4 Performance w.r.t. the amount of training data

We carry out experiments to show the evolution of the per-
formance with the number of training image pairs. In this
experiment we were training models on different number
of positive pairs from a training set and testing on 316
pairs from a testing set. Figure 8 illustrates that the patch-
based approach achieves high performance much quicker
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than full-image based metric learning. Interestingly, for a
small number of positive pairs, the lower m, the better per-
formance is achieved. This might be explained by the fact
that the lower m, the more patches are used for learning
particular metrics.

5.1.5 Learning the deformation cost

We decrease the number of parameters ↵ to 2 parameters
(↵1, ↵2) that are assigned to patch locations obtained by hi-
erarchical clustering with the number of clusters m = 2
(figure 5, m = 2). TODO

5.2. Comparison with state of the art
Baseline - KISSME - with small pc

Baseline - KISSME - with crossvalidation ( 62 pc)
XQDA[17] Kernel-based [24]

Ours - p, PCA, metric learning, pooling
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Figure 10: Exhaustive grid search over ↵1 and ↵2 coeffi-
cients for VIPeR. ↵1 and ↵2 correspond to patches locations
w.r.t. to the left image. Grid search map illustrates Rank-1
recognition rate as a function of (↵1,↵2). The white dot
highlights the optimal operating point.

ber of metrics gives better performance. When a common
metric is learned for multiple patch locations, the amount of
training data is effectively increased because features from
multiple patches can be used as examples for learning the
same metric (Section 3.1).

4.3. Deformable Patch Metric Learning
We simplify Eq. 8 by restricting the number of unique
spring constants. Two parameters ↵1,↵2 are assigned to
patch locations obtained by hierarchical clustering with the
number of clusters m = 2 (see Fig. 10). ↵k encodes
the rigidity of the patches at particular locations. We per-
form an exhaustive grid search iterating through ↵1 and ↵2

while maximizing Rank-1 recognition rate. Fig 10 illus-
trates the recognition rate map as a function of both coeffi-
cients. Interestingly, rigidity (high spring constants) is use-
ful for lower patches (the dark red region in the left-bottom
corner of the map) but not so for patches in the upper lo-
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Figure 11: CMC curves and Rank-1 re-identification rates
for VIPeR dataset. Comparison with state of the art ap-
proaches.

METHOD r = 1 r = 10 r = 20

DPML 41.46% 80.90% 90.46%
PML 33.54% 75.70% 86.65%
KISSME[14] 19.60% 62.20% 84.72%
LF[22] 24.18% 67.12% 82.00%
LADF[18] 30.22% 78.92% 90.44%
Ensembles[21] 32.91% 76.65% 87.76%
XQDA[19] 36.36% 77.84% 89.43%
LOMO+XQDA[19] 40.00% 80.51% 91.08%

kLDFA[25]* 32.8% 79.10% 90.00%
MidLevel[27]* 29.11% 65.95% 79.87%
MidLevel+LADF[27]* 43.39% 84.05% 92.37%
Ensembles[21]* 45.89% 88.90% 95.80%
KernelMap[3]* 36.80% 83.70% 91.70%
DeepNN[1]* 34.81% 76.40% -

Table 1: Comparison with state of the art on VIPeR dataset.
* corresponds to non-linear models. Competitive results are
highlighted in bold.

cations of the bounding box. This might be related to the
fact that metrics learned on the lower locations have higher
performance (compare with nAUC values in Fig. 8). Fig. 5
clearly shows that introducing our deformable model im-
proves the recognition accuracy in all datasets.

4.4. Comparison with Other Methods
VIPeR The performance of PML and DPML on VIPeR
relative to other state of the art approaches is reported in
Fig. 11 and Table 1. Fig. 11 illustrates that our DPML
achieves the new state of the art among linear models. From
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Figure 12: CMC curves for i-LIDS dataset. Our approaches
outperform all existing person re-identification algorithms
by the large margin.

METHOD r = 1 r = 10 r = 20

DPML 57.63% 95.61% 96.21%
PML 51.69% 92.49% 96.80%
KISSME[14] 28.40% 68.90% 83.40%
PRDC[29] 37.83% 75.09% 88.35%
Ensembles[21] 48.98% 79.00% 89.00%

kLDFA[25]* 40.30% 78.10% 89.60%
Ensembles[21]* 50.34% 81.00% 90.00%

Table 2: Comparison with state of the art on i-LIDS dataset.
* corresponds to non-linear models.

Table 1, we can observe that our approach outperforms
all non-linear models except for non-linear ensembles
[21] and a fusion of MidLevel filters [27] with LADF
[18]. We are primarily concerned with the performance of
linear models, as these are practical for deploying on large
databases. Non-linear methods may be more accurate, but
can be slower at making comparisons, which is a significant
obstacle when deploying for camera networks.

i-LIDS This dataset contains a relatively small number of
training samples (we use only 60 image pairs for training).
Driven by our previous analysis (Section 4.2.2), we learn
a single M for all patches, thus increasing the training set.
As a result, PML and DPML significantly outperform full
bounding box based metric learning methods (see Fig. 12).
There are three aspects that make our approach more
effective: (1) we are able to generate a significantly larger
training set using m = 1, (2) occlusions in images pollute
only a few patch scores in our similarity measure, while in
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Figure 13: CMC curves for CUHK01 dataset. Comparison
with state of the art approaches.

METHOD r = 1 r = 10 r = 20

DPML 35.88% 70.92% 79.51%
PML 30.68% 63.40% 74.28%
KISSME[14] 16.41% 51.48% 64.29%
XQDA[19] 24.62% 53.07% 63.34%
Ensembles[21] 31.98% 63.77% 76.68%

MidLevel[27]* 34.30% 66.50% 76.00%
Ensembles[21]* 53.40% 84.40% 90.50%

Table 3: Comparison with state of the art on CUHK01
dataset. * corresponds to non-linear models.

case of full-image based metric learning they might have
global impact on the final dissimilarity measure, (3) mis-
aligned features can be corrected by our deformable model.
DPML outperforms the second best one, Ensembles[21],
by 7.29% in the first rank and by 14.61% in the tenth rank.
Table 2 summarizes the comparison.

CUHK01 This dataset contains better quality and higher
resolution images, thus it is not surprising that keeping
a higher number of degrees of freedom improves the re-
identification performance. Fig. 13 and Table 3 illustrate
that PML and DPML achieve the new state of the art per-
formance. PML and DPML outperform KISSME in the first
rank by 14.27% and 19.47%, respectively. DPML achieves
the best re-identification performance among all algorithms
except non-linear ensembles [21]. In our experiments we
followed a single shot setting and trained our models using
only 486 image pairs. It is not clear whether this procedure
is the same as the training method used in [21].

5. Summary
Re-identification must deal with appearance differences
arising from changes in illumination, viewpoint and a per-
son’s pose. Traditional metric learning approaches do not
address registration errors and instead only focus on fea-
ture vectors extracted from bounding boxes. In contrast, we
propose a patch-based approach. Operating on patches has
several advantages:

• Extracted feature vectors have lower dimensionality
and do not have to be subject to the same levels of
compression as feature vectors extracted for the entire
bounding box.

• Multiple patch locations can share the same metric,
which effectively increase the amount of training data.

• We allow patches to adjust their locations when com-
paring two bounding boxes. The idea is similar to part-
based models used in object detection. As a result,
we directly address registration errors while simulta-
neously evaluating appearance consistency.

Our experiments illustrate how these advantages lead to
state of the art performance on well established, challenging
re-identification datasets.
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