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Figure 1: The deformations created by our new direct skinning method on several key poses of an animation. With the same setup, our
method reduces the bulging artifact of dual quaternion skinning (DQS) on the chest and the candy wrapper artifact of linear blend skinning
(LBS) on the shoulder of the model. The artifacts are indicated by red arrows.

Abstract

Skinning algorithms that work across a broad range of character de-
signs and poses are crucial to creating compelling animations. Cur-
rently, linear blend skinning (LBS) and dual quaternion skinning
(DQS) are the most widely used, especially for real-time applica-
tions. Both techniques are efficient to compute and are effective for
many purposes. However, they also have many well-known arti-
facts, such as collapsing elbows, candy wrapper twists, and bulging
around the joints. Due to the popularity of LBS and DQS, it would
be of great benefit to reduce these artifacts without changing the an-
imation pipeline or increasing the computational cost significantly.
In this paper, we introduce a new direct skinning method that ad-
dresses this problem. Our key idea is to pre-compute the optimized
center of rotation for each vertex from the rest pose and skinning
weights. At runtime, these centers of rotation are used to interpo-
late the rigid transformation for each vertex. Compared to other
direct skinning methods, our method significantly reduces the ar-
tifacts of LBS and DQS while maintaining real-time performance
and backwards compatibility with the animation pipeline.
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1 Introduction

Good skinning algorithms are of fundamental importance for ani-
mating characters, such as humans or animals. Skinning methods
must generate high-quality, detailed deformations around the joints
of the characters from a small set of controllers. Among the many
available skinning methods, skeletal-based algorithms are the most
widely used. Generally, they employ a simplified version of the
anatomical skeleton as the controller. The character is deformed
by rotating the bones around its joints. Each bone propagates its
transformation to the limb that it supports. The skin deformation
typically appears near the joints where an area of the surface is in-
fluenced by the transformations of two or more bones.

Two skeletal-based models, linear blend skinning
(LBS) [Magnenat-Thalmann et al. 1988] and dual quater-
nion skinning (DQS) [Kavan et al. 2008], are implemented in
most game engines, virtual reality engines, and 3D animation
software. Both LBS and DQS are direct methods with closed-form
solutions where each vertex transformation is computed as a
weighted-blend of bone transformations. Both LBS and DQS
only require users to provide per-vertex skinning weights and
per-frame bone transformations. These inputs are intuitive and
users can easily manipulate the weights using painting tools.
While the calculations of the deformations with LBS and DQS
are different, their implementations are very similar and the most
effective ways of calculating the vertex transformations utilize
GPU vertex shaders. Due to this simplicity and efficiency, LBS
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Figure 2: This toy example demonstrates the deformation quality
of different skinning methods for bending and twisting. In clock-
wise order, the five joint manipulations are: 135◦ twisting, 120◦
bending, 90◦ twisting, 90◦ bending, and 90◦ bending with trans-
lation. Compared to previous skinning methods, our method offers
deformations without collapsing or bulging artifacts.

and DQS are the de-facto standard for real-time applications and
even for off-line rendering, where performance is less critical.
LBS and DQS can still play an important role as the foundation
for high-quality script-based rigging systems [Autodesk 2016],
corrective methods [Kry et al. 2002; Vaillant et al. 2013; Vaillant
et al. 2014], or reduced-space physical simulators [Müller and
Chentanez 2011].

Although LBS and DQS offer great performance, they also create
artifacts in deformation quality, particularly for certain poses. Two
well-known artifacts of LBS are elbow collapse (at the bent joints in
Fig. 2) and candy wrapper (at the twisted joints in Fig. 2) due to the
volume loss caused by the linear blending. DQS eliminates these
two artifacts, but it introduces a joint bulging artifact (at bent joints
in Fig. 2) because DQS interpolates rotations around the center of
rotation at the joints [Kim and Han 2014].

In this paper, we provide a solution to the skinning problem that
avoids these artifacts and can be a drop-in replacement to LBS or
DQS in a standard animation pipeline. Our approach relies on two
assumptions: the local transformations should be rigid (orthogo-
nal), and vertices with similar skinning weights should follow simi-
lar transformations. We define the desired deformation as a correc-
tion of the LBS result where we fit the best rigid transformation that
brings vertices with similar skinning weights from the rest pose to
the LBS-deformed pose.

Contributions. Our analysis shows that we can simplify the bone
transformations in the equations so that the most computationally
expensive step, i.e., finding the optimum center of rotation (CoR)
for each vertex, can be precomputed from the rest pose and skinning
weights, without knowledge of the bone transformations for each
frame of the animation. As a result, we can cache the CoRs and di-
rectly calculate per-vertex transformations at runtime. Compared
to previous direct skinning methods [Magnenat-Thalmann et al.

1988; Kavan and Žára 2005; Alexa 2002; Magnenat-Thalmann
et al. 2004; Kavan et al. 2008], our method offers three main ad-
vantages:

• Deformation Quality. Our method imposes orthogonal con-
straints to prevent the elbow collapsing and candy wrapper
artifacts of the LBS model. Our method also reduces the joint-
bulging artifact of DQS by estimating an optimized CoR for
each vertex. In Fig. 2, we show the improvement in deforma-
tion quality over other direct skinning methods.

• Backward Compatibility. Our model uses the same setup
as other skeletal-based skinning models, including LBS and
DQS: the rest pose, the skinning weights, and the bone trans-
formations. Therefore, it can be seamlessly integrated into
existing animation pipelines.

• Performance. Our method can fully utilize current graphics
hardware (GPUs). With the cached CoRs, we can directly
compute the deformed positions in the vertex shaders, similar
to LBS and DQS. In particular, our runtime implementation
is simply one LBS step on CoRs followed by one quaternion
blending step (Section 3.2).

2 Related Work

We review the literature on skinning by considering three cate-
gories: geometric skinning, physical simulation and data-driven ap-
proaches. The approach described in this paper falls into the cate-
gory of direct methods for geometric skinning, so we focus primar-
ily on those methods.

Geometric skinning deforms a surface representation of the model
to best represent the current pose of the character. These represen-
tations facilitate simple, high performance algorithms that are suit-
able for real-time applications. Geometric skinning methods can
be further divided into two categories: direct methods and indirect
methods.

Direct methods explicitly compute the deformed position of each
vertex from control parameters and a rest configuration of the
model. The first direct skinning model is known by many names:
joint-dependent local deformation, skeleton subspace deforma-
tion, or linear blend skinning (LBS). It is credited to Magnenat-
Thalmann and colleagues [1988]. In their paper, they introduced
two important concepts: (1) bones which support the nearly rigid
parts of the model and whose rigid transformations are used to con-
trol the animation, and (2) skinning weights which generate smooth
deformations by blending bone transformations and then applying
the result to each vertex. In the original work, the simple linear
blending of 4×4 transformation matrices generates noticeable vol-
ume loss artifacts. These have come to be known as the elbow col-
lapsing artifact (when joints are bent by almost 180◦) and the candy
wrapper artifact (when joints are twisted by a significant rotation)
(Fig. 2).

Non-linear techniques, such as log-matrix skinning (LMS) [Alexa
2002; Magnenat-Thalmann et al. 2004], spherical blend skin-
ning (SBS) [Kavan and Žára 2005], or dual quaternion skinning
(DQS) [Kavan et al. 2008], prevent volume loss by blending trans-
formations in the orthogonal space but create bulges near bent joints
(Fig. 2). This bulging artifact occurs because all vertices near a joint
share the same center of rotation (CoR), which is located exactly at
the joint [Kim and Han 2014]. In contrast, we compute different
CoRs for different vertices. Fig. 7 shows CoRs correponding to the
toy example in Fig. 2. In this simple example, our CoRs behave
similarly to the curve skeleton [Yang et al. 2006; Forstmann et al.



2007; Öztireli et al. 2013] without requiring the specific shape of
the skeleton.

One common approach to improving the deformation quality of
direct methods is to add more dimensions. Adding extra bones
(helper bones) at joints reduces volume loss by dividing large
twist/bend angles into smaller angles across multiple bones [Mohr
and Gleicher 2003; Mukai 2015]. Using multidimensional skin-
ning weights allows input transformations to be decomposed into
different components, where each component is blended separately
with one dimension of skinning weights [Wang and Phillips 2002;
Merry et al. 2006; Jacobson and Sorkine 2011; Kavan and Sorkine
2012]. Cage-based deformers [Ju et al. 2005; Joshi et al. 2007; Lip-
man et al. 2008; Jacobson et al. 2011] also fall into in this category
because each near-rigid part of the model is controlled by many
surrounding cage vertices instead of a single transformation. Al-
though adding more dimensions helps to resolve artifacts, an over-
head is incurred as the extra controllers (bone transformations) have
to be animated and extra skinning weights have to be computed or
painted.

Indirect methods typically compute the skinning deformation in
multiple passes. Correction methods [Vaillant et al. 2013; Vail-
lant et al. 2014] perform a direct skinning (DQS) in the first pass
and then fix artifacts in a second pass by considering intersec-
tions or the global elasticity of the deformed model produced by
the first pass. Poisson stitching techniques [Sumner and Popović
2004; Sumner et al. 2005; Wang et al. 2007; Weber et al. 2007]
ignore smooth interpolations in the first pass by directly applying
one rigid transformation per triangle, and then, in a second pass,
solving the large, sparse Poisson equation to reconstruct a smooth
surface from the rough, disconnected mesh produced by the first
pass. Multiple passes can also be used to solve a non-linear op-
timization to produce an as-rigid-as-possible deformation [Sorkine
and Alexa 2007; Jacobson et al. 2012a]. In general, indirect meth-
ods use multiple passes to solve vertex-vertex relationships, which
are ignored by direct methods. Although these extra relationships
improve the deformation quality, they make it more difficult to cre-
ate a high-performance implementation on graphics hardware be-
cause significant communication between vertex computations is
required.

Physical simulations provide many important visual effects that
are missing from geometric methods. These include colli-
sions [McAdams et al. 2011], jiggling [Liu et al. 2013], skin slid-
ing [Li et al. 2013], and wrinkling [Rémillard and Kry 2013]. Sim-
ulation packages are included in professional tools, such as Maya
Muscle1 or Weta Digital’s Tissue System2. However, setting up
a character with an anatomical model and appropriate material
properties requires significant effort [Teran et al. 2005; Lee et al.
2009]. In addition, physical simulation approaches require input
of external forces, which is not native in the traditional animation
pipeline [Capell et al. 2007; Hahn et al. 2012; Hahn et al. 2013].
Simulation-based approaches are typically not real-time due to the
complexity of computing each time step and the small time steps
required.

Data-driven methods use examples in the shape space to model
the deformation behavior of the character model [Sloan et al. 2001].
Blendshape techniques [Lewis and Anjyo 2010; Seo et al. 2011] are
the most commonly implemented data-driven methods. They com-
pute the deformation as a linear combination of basic poses. Pose-
space deformation [Lewis et al. 2000] uses non-linear shape blend-
ing with the parameters computed by linear least squares. Cor-
rective shape methods also offer great flexibility because example

1www.autodesk.com
2www.wetafx.co.nz

Figure 3: An illustration of our method: Using the skinning weights
and the rest pose (left), we first perform LBS (middle). LBS pro-
duces a collapsing artifact at a point p (black dot) near the joint
due to the non-orthogonal output transformation matrix. We re-
orthogonalize this transformation by finding the best rigid transfor-
mation [Rp tp] to match a set of vertices {v} (red lines) with simi-
lar skinning weights with p from the rest pose to the LBS-deformed
pose. Applying [Rp tp] to p generates the final result that removes
the collapsing artifact (right). In this toy example, {v} forms a
cross section of the bar as all points on it have the same skinning
weights.

shapes can be learned from simulation data, captured data, or user-
provided data [Kry et al. 2002; Sumner et al. 2005; Anguelov et al.
2005; Park and Hodgins 2006; Wang et al. 2007; Park and Hodgins
2008; Feng et al. 2008; Kavan et al. 2011; Loper et al. 2014; Tsoli
et al. 2014].

3 Method

We will first formulate the problem in the continuous domain and
present the solution in Sections 3.1. Then, we will outline the dis-
cretized calculation on triangle meshes in Section 3.2. Finally, we
will present the runtime algorithm in Section 3.3.

Let Ω ⊂ R3 be the (continuous) rest pose shape and W ⊂ Rm be
the skinning weights of all vertices p ∈ Ω, where m denotes the
number of bones and wpj ∈ R denotes the skinning weight of bone
j on vertex p. Let [Rj tj ] be the transformation matrix of bone j
(j = 1..m), where Rj ∈ R3×3 is the rotation matrix and tj ∈ R3

is the translation vector.

We need to compute the rigid (orthogonal) transformation matrix
[Rp tp] for the rest pose vertex p from bone transformations
[Rj tj ] (∀j = 1..m), the rest pose Ω, and the skinning weights
W. The rotation Rp is directly computed by quaternion linear
interpolation (QLERP) [Kavan and Žára 2005].

The translation tp is indirectly inferred based on the assumption
that a vertex v with similar skinning weights wv & wp will have
similar transformations to [Rp tp]. We can use a set of all ver-
tices {v} to compute a better translation from an initial LBS de-
formation. This translation is the one that best matches p and all
{v} from the rest pose to the LBS-deformed pose. Because this
matching produces a single rigid transformation for a group of ver-
tices with similar weights, it can prevent collapsing, as illustrated
in Fig. 3. In Section 3.1, we will show that solving this matching
problem allows us to pre-compute the center of rotation (CoR) for
vertex p.

Similarity Function. We define the similarity s(wp,wv) between
two skinning weights of vertices p and v as the sum of the pairwise
terms in Eq. (1), where the product of weights wpjwpkwvjwvk

represents the contributions of bone j and bone k and the difference
(wpjwvk − wpkwvj) represents the distance in the normalized
skinning weight space. The reason we use this difference as the dis-
tance metric is that even if the input skinning weights are affine (the



sum of skinning weights at each vertex is 1), the sum of skinning
weights on bones j and k (wpj +wpk and wvj +wvk) might not
be. Thus, we consider two pairs of skinning weights (wpj ,wpk)
and (wvj ,wvk) to be similar if wpj : wpk ≈ wvj : wvk or
wpjwvk ≈ wpkwvj . σ is the parameter that controls the width of
the exponential kernel.

s(wp,wv) =
∑

∀j %=k

wpjwpkwvjwvk e−
(wpjwvk−wpkwvj)

2

σ2

(1)

3.1 Solution in the Continuous Domain

For a vertex p, we consider all vertices v with similar skinning
weights, where the similarity is defined by s(wp,wv) in Eq. (1).
We find the best translation tp by minimizing the weighted sum
of squared errors on all vertices v in Eq. (2), where we want the
transformation [Rp tp] to bring the rest pose ∀v ∈ Ω (source
vertices) as close as possible to the LBS-deformed pose ∀ṽ (target
vertices).

tp = argmin
t

∫

v∈Ω

s(wp,wv) ‖Rpv + t− ṽ‖22 dv (2a)

where: ṽ =
m∑

j=1

wpj (Rjv + tj) (2b)

The minimization in Eq. (2) is a linear least squares problem with
the solution obtained by the normal equation (3a). Substituting ṽ
in Eq. (2b) and rearranging the equations yields:

tp =

∫
v∈Ω

s(wp,wv) (ṽ −Rpv) dv∫
v∈Ω

s(wp,wv) dv
(3a)

=

∫
v∈Ω

s(wp,wv)
(∑m

j=1 wpj (Rjv + tj)−Rpv
)
dv

∫
v∈Ω

s(wp,wv) dv

=
m∑

j=1

wpj

(
Rj

∫
v∈Ω

s(wp,wv)v dv
∫
v∈Ω

s(wp,wv) dv
+ tj

)

−Rp

∫
v∈Ω

s(wp,wv)v dv
∫
v∈Ω

s(wp,wv) dv

=
m∑

j=1

wpj (Rjp
∗ + tj)−Rpp

∗ (3b)

where: p∗ =

∫
v∈Ω

s(wp,wv)v dv
∫
v∈Ω

s(wp,wv) dv
(3c)

We can infer some properties from Eq. (3b) and Eq. (3c):

• The first term in Eq. (3b) (
∑m

j=1 wpj (Rjp
∗ + tj)) corre-

sponds to applying LBS on p∗.

• p∗ plays the role of the CoR of the source vertices (the rest
pose) and

∑m
j=1 wpj (Rjp

∗ + tj) plays the role of the CoR
of the target vertices (LBS-deformed pose).

• Most important, the computation of CoR p∗ in Eq. (3c) is
independent of the bone transformations; therefore, it can be
pre-computed and cached.

3.2 Computation on Triangle Meshes

Discretization. Let T be the set of all triangles tαβγ that represent
an input model Ω. We compute the integration Eq. (3c) over all
triangles tαβγ on T . For each triangle, we use the average value of
the skinning weights on three vertices to approximate the similarity
s(·, ·) (computed by Eq. (1)). Because the triangle mesh is a piece-
wise linear function, the CoR of vertex vi can be approximated as:

p∗
i =

∑
tαβγ∈T s(wi,

wα+wβ+wγ

3 )
vα+vβ+vγ

3 aαβγ

∑
tαβγ∈T s(wi,

wα+wβ+wγ

3 )aαβγ

(4)

where aαβγ denotes the area of triangle tαβγ , vα and wα denote
the position and skinning weight of vertex α, respectively (and sim-
ilarly for vertices i, β, and γ). To avoid large numerical error on the
approximation of the similarity s(·, ·), we subdivide the input trian-
gle mesh so that the l2 skinning weight distance ||wi −wj ||2 < ε
for all edges eij . The subdivision is done by recursively bisecting
an edge if the l2 skinning weight distance between two vertices is
greater than ε.

Integration. We observe that a naı̈ve implementation to compute
p∗
i by summing all triangles can take up to an hour for a model with

approximately 30,000 vertices (using our unoptimized C++ single-
thread implementation on a consumer PC). Instead, we can greatly
accelerate the performance (as reported in Table 1) by employing
the following techniques:

• Approximate nearest neighbor (ANN) search. For each ver-
tex i with skinning weight wi, we first query all vertices
j with a similar skinning weight, i.e., vertices j, so that
||wi − wj ||2 < ω. We use these vertices j as the seeds for
the next step. Our ANN search is accelerated by clustering all
vertices in the skinning weight space using maximized min-
imum distance point sets [Schlömer et al. 2011] as the cen-
ters of clusters. The clusters are used to quickly reject distant
vertices. We use approximately

√
n clusters, where n is the

number of vertices.

• Smooth skinning weights assumption. Typically, the input
skinning weights are smooth on the surface of the models.
Using this assumption, we perform breadth-first search on the
triangle adjacency graph, starting from all triangles adjacent
to the seed vertices in the previous step. We stop expanding
the search if the similarity (Eq. (1)) is smaller than a threshold
ε.

• Parallel implementation. Because the CoR of each vertex can
be computed independently, we can compute all CoRs in par-
allel. We randomly shuffle the order of calculations on the list
of vertices to balance the workload between different comput-
ing cores.

3.3 Runtime Algorithm

The pseudocode to compute the skinning deformation is given in
Algorithm 1. There are two main steps:

• QLERP [Kavan and Žára 2005] from line 1 to line 6 computes
the rotation matrix. The linear interpolation of unit quater-
nions uses the ⊕ operator (line 5) to resolve the quaternion
antipodality [Kavan et al. 2008], where both quaternions q
and −q represent the same rotation. This ⊕ operator flips
one quaternion to a consistent direction with the second be-
fore performing the sum, where the consistency between two
quaternions is defined as the sign of their vector dot product.



Algorithm 1 Skeletal Skinning with Optimized Centers of Rotation

Input: n vertices, vertex i includes:
• Rest pose position vi ∈ R3

• Skinning weights wi ∈ Rm

• CoR p∗
i ∈ R3 computed by Eq. (1) and Eq. (4)

m bones, bone j transformation is [Rj tj ] ∈ R3×4

Output: Deformed position v′
i ∈ R3 for all vertices i = 1..n

1: for each bone j do
2: Convert rotation matrix Rj to unit quaternion qj

3: end for
4: for each vertex i do
5: q← wi1q1 ⊕ wi2q2 ⊕ . . .⊕ wimqm

where: qa ⊕ qb =

{
qa + qb if qa · qb ≥ 0

qa − qb if qa · qb < 0

(qa · qb denotes the vector dot product)
6: Normalize and convert q to rotation matrix R

7: LBS: [R̃ t̃]←
∑m

j=1 wij [Rj tj ]

8: Compute translation: t← R̃p∗
i + t̃−Rp∗

i (Eq. (3b))
9: v′

i ← Rvi + t

10: end for

• LBS in line 7 computes the transformation interpolation of the
CoR p∗

i .

These two steps are similar to SBS [Kavan and Žára 2005], except
that we do not need to compute CoRs at runtime.

Scaling and Shearing. As our method imposes the orthogonal con-
straint on output transformations applied on vertices, it does not
naturally support scaling and shearing of the input bone transforma-
tions. But similar to DQS [Kavan et al. 2008], scaling and shearing
can be handled in two phases where scaling/shearing components
are linearly blended in the first phase and then, our method is ap-
plied in the second phase to handle rotation and translation.

4 Results and Comparisons

We used five models, described in Table 1, to demonstrate our re-
sults and compare our method with others. The skinning weights
for the first four models were computed by bounded biharmonic
weights with controlled extrema [Jacobson et al. 2012b] and the
skinning weights for the cloth model were computed by Maya’s
closest distance bind with a dropoff rate of 2.0. In all comparisons,
we used the same skeleton animation for all the methods. In our
visualizations, joints are represented by green spheres, bones are
shown by yellow lines, and centers of rotation (CoRs) are repre-
sented by red dots.

Smooth skinning weights, such as bounded biharmonic weights [Ja-
cobson et al. 2012b], do not generate a plausible twisting deforma-
tion when the twist appears at the joint (as shown at the top panel
of Fig. 4). To distribute the twist along the bone, we split the bone
by adding one extra joint at the middle of the bone and modify the
original skinning weights by splitting the weight corresponding to
the original bone wj to form a new pair wj′ and wj . The weight
wj′ corresponding to the new bone j′ is computed by multiplying
the original weight wj with the projection weight eproj (Eq. (8)
in [Jacobson and Sorkine 2011]) and the original weight wj is then
subtracted by this value (illustrated in Fig. 5). The improvement
with extra twist joints is shown in the bottom panel of Fig. 4.

Goliath man boy horse cloth
n = 39158 n = 20846 n = 22459 n = 8435 n = 2601
f = 78312 f = 41616 f = 44360 f = 16860 f = 5000
m = 77 m = 76 m = 28 m = 31 m = 9

t = 15.7 (s) t = 5.6 (s) t = 18.0 (s) t = 10.9 (s) t = 0.7 (s)

Table 1: The models and the pre-computation time of our
method on these models (horse model courtesy of Sumner and
Popović [2004]). n denotes the number of vertices, f denotes the
number of triangles, m denotes the number of bones, and t de-
notes the pre-computing time. The running time (in seconds) was
recorded on a computer with an eight-core 2.40GHz CPU.

Figure 4: Top panel: the traditional skeleton setup with bounded
biharmonic weights produces an unnatural twisting deformation
near the joints. Bottom panel: adding extra joints at the middle
of the upper and lower arms can improve the quality without mod-
ifying skinning models. Even with the extra joints, LBS and DQS
still exhibit candy wrapper and joint bulging artifacts (indicated by
red arrows).

Our simple solution is more effective than adding one extra dimen-
sion to the skinning weights [Jacobson and Sorkine 2011; Kavan
and Sorkine 2012] because: first, it does not require modification
of the data structure and the algorithm of the skinning models, and
second, it has lower overhead because we only need a few twistable
bones in practice. We find that adding four extra bones for the up-
per and lower arms is generally sufficient. This is a small number
compared to always having to compute one extra twist deformer per
bone [Jacobson and Sorkine 2011; Kavan and Sorkine 2012].

We found that our method is not sensitive to parameter selection.
In our experiments, it produced visually indistinguishable results
with any ε ≤ σ ≤ 0.1, ω ≥ 0.1, and ε ≤ 10−6. We recall that σ
is the parameter of the similarity function (1), ε is the subdivision
threshold, ω is the ANN search threshold, and ε is the search cutoff
threshold (ε, ω, and ε are described in §3.2). Any smaller values of
ε, σ, and ε or larger value of ω only increases the execution time
of the pre-computation step. For this reason, we use (ε,σ,ω, ε) =
(0.1, 0.1, 0.1, 10−6) as the parameters for all experiments. The pre-
computing time with these parameters is reported in Table 1.



Figure 5: The illustration of weight splitting for adding a twist
joint. The new skinning weight wj′ (purple region) is computed by
multiplying the original skinning weight wj (yellow region on the
left) with the projection weight eproj (blue region) [Jacobson and
Sorkine 2011] . The original bone is illustrated by the yellow line
and the new bone is illustrated by the purple line at the bottom.

LBS generates candy wrapper and joint collapsing because the lin-
ear blending produces shearing transformations that cause volume
loss. In general, the joint collapsing (as shown in Fig. 8 and Fig. 9)
is not as visually distracting as the candy wrapper, where a joint is
twisted (as shown in Fig. 4 and Fig. 6). Our formulation (illus-
trated in Fig. 3) avoids this problem because it imposes an orthogo-
nal (rigidness) constraint on the cross section that helps to preserve
the volume. As shown in Fig. 4 and Fig. 6, OPS can completely
remove the candy wrapper artifact on vertices influenced by two
bones.

For vertices influenced by many joints, our method still exhibits
a slight volume loss (as shown at the chest of the Goliath model in
Fig. 6) because there is no unique CoR for more than two bones. We
can investigate this issue by visualizing the CoRs (Fig. 7), which are
distributed near the medial axes of the models. The CoRs form a
one-dimensional curve for vertices influenced by two bones (ver-
tices on the limbs). Because the curve has zero volume, applying
LBS tranformations on these CoRs (line 7 in Algorithm 1) does not
reduce the volume of the curve. As the result, all vertices rotating
around this curve preserve the volume of the model. In contrast,
CoRs of vertices influenced by more than two bones (vertices on
the body of the models, especially at the chest and the hip) form a
three-dimensional object which might lose volume after LBS trans-
formations.

Other non-linear skinning methods (LMS, SBS, and DQS) can re-
solve collapsing artifacts, but they introduce a bulging artifact be-
cause all vertices near a joint can only rotate around a single CoR
(the joint) [Kim and Han 2014]. In contrast, our method avoids
bulging by computing per-vertex CoRs at the rest pose and trans-
forming them smoothly at runtime. The CoRs transformations be-
tween different poses are visualized in Fig. 7.

LBS and DQS calculations are quite simple and robust. LMS is
not robust to a twist/bend larger than 90◦ due to the non-injective
inverse [Bloom and Blow 2004] (Fig. 8 and Fig. 9). SBS generates
non-smooth deformation if two neighboring vertices are influenced
by different sets of bones [Kavan et al. 2008] (Fig. 11 and Fig. 12).
Although our method performs a non-trivial pre-computing step,
we observe no robustness issue in these cases.

With different poses (Fig. 9), different skinning weights (Fig. 10),
or a model with multiple components (Fig. 11 and Fig. 13), our
method consistently produces better deformation quality than other
direct skinning methods.

5 Discussion

We have presented a new direct skinning method that addresses the
common artifacts of linear blend skinning (LBS) and dual quater-
nion skinning (DQS). Our main contribution is a method to pre-
compute the per-vertex centers of rotation (CoRs) from only the rest
pose and the skinning weights. These CoRs improve the deforma-
tion quality while still maintaining comparable performance with

previous methods. Our method uses the standard skeletal-based
skinning setup, so the computational cost to replace legacy LBS
and DQS in the animation pipeline is insignificant.

We have considered alternative choices for the main steps of our
algorithm and we explore the advantages and disadvantages of these
alternative solutions in the discussion below.

An alternative to the approach presented in Section 3.1 of only find-
ing the translation would be to compute both translation and rota-
tion by jointly optimizing the objective function in Eq. (2). This
formulation becomes the Orthogonal Procrustes problem [Kabsch
1978; Horn et al. 1988], where the optimum rotation can be solved
by performing singular value decomposition (SVD) on a 3 × 3
cross-product matrix. This matrix can be cached as the CoR in
Section 3. This solution does not require representing the bone
rotations in quaternions, which could save some storage and data
transfer. However, it has two limitations. First, it is costly to cache
nine floats (for the cross product matrix) and perform SVD at run-
time. Second, the optimum solution, which minimizes the sum of
square distances (2a), does not work well for large rotations because
distances are computed on straight line segments, as illustrated on
the left side of Fig. 14.

Compared to other rotation interpolation methods [Shoemake 1985;
Buss and Fillmore 2001; Alexa 2002], QLERP is only an approx-
imate method. However, it offers two main advantages: first, it is
quite simple and effective, and second, it can handle multiple rota-
tions. As shown by Kavan and Žára [2005], the upper bound error
of QLERP is only 8.15◦ for a 180◦ twist and the practical error is
typically much smaller. While our implementation resolves antipo-
dality per-vertex (Section 3.3), better performance can be gained by
solving it per-bone when the bone hierarchy (skeleton) is given [Ka-
van et al. 2008].

Instead of performing per-triangle integration (Section 3.2), we can
perform per-vertex integration with the infinitesimal dv to be com-
puted as the Voronoi area of vertex v. However, per-vertex inte-
gration is more difficult because the local patches are polygonal
(Voronoi regions around vertices). We found that first-order inte-
gration (with linear interpolation) gives visually good results on tri-
angle meshes.

Generally, any similarity function with the form of the inverse dis-
tance in the skinning weights space is suitable. However, a function
with a very fast dropoff might affect the robustness of our method.
For example, the Gaussian radial basis function s(wp,wv) =

e−
||wp−wv||22

σ2 does not work well on vertices influenced by more
than two bones (e.g. vertices near branching joints in the skeleton)
because there might only be a small number of vertices with sim-
ilar weights that fall into the hyper-sphere centered at wp in the
high-dimensional non-zero skinning weight space.

Our method still has some of common limitations of direct skinning
methods. It does not handle collisions, so the produced deformation
might self intersect. It also omits dynamics and global constraints,
so our results lack effects such as jiggling or skin sliding. For the
best performance, our method requires an optimized set of skinning
weights. This requirement is a challenge for a weight-painting tool
because the pre-computed CoRs need to be updated on the fly with
the weight changes. In the future, we will investigate dedicated
tools to set up good skinning weights for this approach.



Figure 6: A comparison on the Goliath model with big muscles: LBS shows a strong candy wrapper artifact on twisting while non-linear
methods (LMS, SBS, and DQS) show a bulging artifact at the thigh. Notice how the thigh bone is off-center and there is no crease at the hip.
In these examples, our method generates more natural deformation, even at challenging places like the shoulder or the hip.

Figure 7: Our centers of rotation (CoRs) are indicated by red dots.
We only visualize CoR for vertices with more than one non-zero
skinning weight, in which their pairwise similarities (Eq. (1)) exist
so that their CoRs can be computed.
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