
Smooth Imitation Learning

Hoang M. Le
California Institute of Technology

hmle@caltech.edu

Yisong Yue
California Institute of Technology

yyue@caltech.edu

Peter Carr
Disney Research

peter.carr@disneyresearch.com

Abstract

We study the problem of smooth imitation learning, where the goal is to train a
policy that can imitate human behavior in a dynamic and continuous environment.
Since such a policy will necessarily be imperfect, it should be able to smoothly
recover from its mistakes. Our motivating application is training a policy to imitate
an expert camera operator as she follows the action during a sport event; however
our approach can be applied more generally as well. We take a learning reduction
approach, where the problem of smooth imitation learning can be “reduced” to a
regression problem, and the performance guarantee of the learned policy depends
on the performance guarantee of the reduced regression problem (which is often
much easier to analyze). Building upon previous learning reduction results, we
can prove that our approach requires only a polynomial number of learning or
exploration rounds before converging to a good policy. Our empirical validation
confirms the efficacy and practical relevance of our approach.

1 Introduction

In many domains, one important machine learning task is to train an automated policy or controller
to mimic a human expert. For example, in automated broadcasting, we require an automated camera
controller that mimics the behavior of a professional camera operator in response to a dynamic
environment [1]. One increasingly popular approach is to use imitation learning [3, 4], which aims to
learn a policy to predict human behavior given the current state of the environment, and is essentially
a “lifting” of conventional machine learning into dynamical environments.

We consider the agnostic learning setting, where any trained policy will be necessarily imperfect
due to limitations in the model class and feature representation of the environment. As such, when
taken to a dynamic environment, an imitation policy trained using conventional machine learning
methods must account for the sequentially cascading errors caused by a drift in distribution of states
at test time compared to what the model was trained on. In addition, many applications of imitation
learning naturally operate in environments with very large state space and action spaces. Both these
challenges can be posed as an exploration problem, i.e., how to (statistically) efficiently explore the
space of possible trajectories in order to reliably train a good policy.

In this paper, we consider the problem of smooth imitation learning, which extends conventional
imitation learning to the continuous regime. The goal is now to train a policy to smoothly mimic
human demonstrations in a continuous and dynamic environment. This problem arises naturally in
a diverse range of domains: in addition to our demonstrated application in automatic broadcasting
[1], smooth imitation learning can be generally applied towards surgical robotics learning from
human demonstration, learning movement of bio-prosthetic limbs using neural signals feedback,
self-driving wheel-chairs, etc.

1

2 Problem Setup

Following the basic setup from [4], let ⇧ denote a class of policies the learner is considering, and
let T denote the time horizon of the imitation problem. Imitation learning is a sequential learning
problem. In each round n, the following happens:

• Given initial state s0 drawn from starting distribution of states, the learner executes a policy ⇡n,
resulting a sequence of states sn1 , . . . , snT .

• For each snt , expert feedback pyn
t is provided indicating what the human expert would do given snt .

• The learner integrates this knowledge and proceeds to the next round n – n ` 1.

For any policy ⇡ P ⇧, let d⇡t denote the distribution of states at time t if the learner executed ⇡ for
the first t ´ 1 time steps. Furthermore, let d⇡ “ 1

T

∞T
t“1 d⇡t be the average distribution of states if

we follow ⇡ for all T steps. The goal is to find a policy p⇡ P ⇧ which minimizes the imitation loss
under its own induced distribution of states:

p⇡ “ arg min
⇡P⇧

Es„d⇡ r`ps, ⇡qs , (1)

where the (convex) loss function `ps, ⇡q captures how well ⇡ imitates expert human demonstrations
under those states. One common loss is squared loss between the policy’s decision and the expert
demonstration: `ps, ⇡q “ }py ´ ⇡psq}2. We assume the agnostic setting, where the minimizer of (1)
does not necessarily achieve 0 loss (i.e., we cannot perfectly imitate the human expert).

For instance, in the basketball broadcasting setting, states s contain information regarding the loca-
tion of the players as well as the configuration of the camera, and the policy ⇡ must decide where
the point the camera next (i.e., ⇡psq), with the quality of that decision characterized by the loss `
that compares with what the human expert would do given s.

Each ⇡n can be thought of as an exploration strategy that collects labels pyn
1 , . . . , pyn

T for states
sn1 , . . . , snT . Because of the potential branching factor of decisions, one might naively think that
a very large (possibly infinite) number of learning rounds is required to fully explore the continuous
state space. Previous work showed that only a polynomial number of learning rounds is required for
convergence to the minimizer of (1) [3, 4], but with a dependence on the length of each round T .
In the following we present an approach that removes this dependence on T for smooth imitation
learning, and thus enjoys much faster convergence guarantees.

3 Our Contributions

We take a learning reduction approach, where feedback py is integrated via standard supervised learn-
ing and can be solved by existing machine learning algorithms. A big challenge with using learning
reduction is to control for the cascading errors caused by the changing dynamics of the system. As
the dynamics of the system change from one policy to the next, we no longer test on the same dis-
tribution of states as during training, which violates the assumptions of supervised learning. This
problem is additionally coupled with the need to explore efficiently to achieve optimal sample com-
plexity, as we are operating in an infinite / continuous state and action space. Our reduction approach
provides a solution to this coupled challenges. The key steps in the reduction are to show that:

• The empirical distribution of states that the supervised learning algorithm is trained on converges,
and thus the distribution of states dp⇡ induced by the resulting policy (approximately) matches the
distribution that p⇡ was trained on.

• The learning guarantees of the supervised learning problem “lifts” to the dynamical system, and thus
provides a bound on (1).

Our approach improves upon previous learning reduction approaches [3, 4] in the following ways:
• The convergence rate does not depend on the length of each round T for smooth imitation learning,

and thus requires much less exploration than previous work. In addition, our approach has adaptive
learning rate, thus further improves the convergence rate compared to previous approaches.

• We propose an approach to simulate a substantial amount of “virtual” expert feedback, and thus
requires much fewer direct human expert demonstrations.

• Our approach is fully deterministic. Under the continuous setting, deterministic policies are strictly
better than stochastic policies as (i) smoothness is critical and (ii) policy sampling requires holding
more data during training, which may not be practical for infinite state and action space.

2

4 Approach

4.1 Learning Reduction Approach

Standard supervised regression methods assume i.i.d. training and test examples, which leads to an
unsatisfactory result directly applied to sequential learning problems (e.g. left panel of figure 2).
Thus, a principled reduction of smooth imitation learning to supervised regression should (approxi-
mately) preserve the i.i.d. relationship between training and test examples, and in particular the state
distribution d⇡ should smoothly converges to a stationary distribution. With such a stable learning
reduction, the performance of the regression subroutine can be used to quantify the performance of
the final policy ⇡N (see Theorem 4.1). The key design questions are: (i) what should be the explo-
ration policy for the next iteration? (ii) what should be the expert feedback? and (iii) how should we
design a good loss function to feed into the base regression routine?

Algorithm 1 Smooth Search-Based Imitation Learning
Require: Features X, human expert policy ⇡‹, base routine Regress, regularizer f⇡
1: Initialize Y0 “ ⇡‹pXq, S0 “ �pX,Y0q, fp⇡ “ argminfkY0 ´ fpY0qk
2: Initial policy ⇡0 “ p⇡0 “ RegresspS0,Y0|fp⇡q.
3: for n “ 1, . . . , N do
4: Roll out Yn “ ⇡n´1pSn´1q ô Set exploration trajectory
5: Set exploration states Sn “ �pX,Ynq ô e.g. snt – rxt:t´⌧ , y

n
t´1:t´⌧ s where yn

t P Yn

6: Collect smooth expert feedback pYn “ tpyn
t u @snt P Sn, ô Gather 1-step look-ahead feedback

7: Update regularizer f⇡̂ ô f⇡̂ “ argminfk pYn ´ fp pYnqk
8: Learn model p⇡n “ RegresspSn, pYn|fp⇡q
9: New policy ⇡n “ �p⇡n ` p1 ´ �q⇡n´1 ô � adaptively set via loss of p⇡n vs. ⇡n´1 relative to ⇡‹

10: end for
11: return Last policy ⇡N

Algorithm 1 describes our approach. The raw data T S “ tX, ⇡‹u consists of continuous streams
of input features X “ tx1, . . . , xT u and a human expert demonstrator ⇡‹. The state space S “
�pX,Yq is defined based on both raw input X and an (imperfect) trajectory Y. For example,
st “ rxt:t´⌧ , yt´1:t´⌧ s. The exploration trajectory Y of a policy ⇡ can be rolled out by sequentially
applying ⇡ to S: yt “ ⇡pstq. We denote by pY “ tpytu the expert feedback actions indicating what
the human expert would do given exploration states S “ tstu.

The new exploration policy for the next round (Line 4) is set as the weighted average of the previous
learned regression model p⇡n and the previous exploration policy ⇡n (Line 9). This interpolation step
plays two key roles. First, it is a form of myopic or greedy exploration that incorporates the best
trained policy so far. Intuitively, rolling out ⇡n leads to incidental exploration on the mistakes of ⇡n,
and so each round of exploration is focused on refining an improving policy.

Second, the interpolation in Line 9 ensures a slow drift in the distribution of states from round
to round, which preserves an approximate i.i.d. property for the supervised regression subroutine
and guarantees convergence of the learning reduction approach. However this model interpolation
creates an inherent tension between maintaining approximate i.i.d. for valid supervised learning and
more aggressive exploration (and thus faster convergence). In fact, in previous work [3], theoretical
guarantees only apply for very small � (« 1{T 3). We have developed an adaptive approach for
setting � that circumvents much of this tension (see Theorem 4.1), and thus guarantees a valid
learning reduction while substantially reducing the rounds of exploration and learning required.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#307

CVPR
#307

CVPR 2015 Submission #307. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Learning Online Smooth Predictors for Realtime Camera Planning

Anonymous CVPR submission

Paper ID 307

Abstract

Data-driven prediction methods are extremely useful in
many computer vision applications. However, the estima-
tors are normally learned within a time independent con-
text. When used for online prediction, the results are jittery.
Although smoothing can be added after the fact (such as
a Kalman filter), the approach is not ideal. Instead, tem-
poral smoothness should be incorporated into the learning
process. In this paper, we show how the ‘search and learn’
algorithm (which has been used previously for tagging parts
of speech) can be adapted to efficiently learn regressors for
temporal signals. We apply our data-driven learning tech-
nique to a camera planning problem: given noisy basketball
player detection data, we learn where the camera should
look based on examples from a human operator. Our exper-
imental results show how a learning algorithm which takes
into account temporal consistency of sequential predictions
has significantly better performance than time independent
estimators.

1. Introduction
In this work, we investigate the problem of determining

where a camera should look when broadcasting a basketball
game (see Fig. 1). Realtime camera planning shares many
similarities with online object tracking: in both cases, the
algorithms must constantly revise an estimated target posi-
tion as new evidence is acquired. Noise and other ambi-
guities cause non-ideal jittery trajectories: they are are not
good representations of how objects actually move, and in
camera planning, lead to unaesthetic results. In practice,
temporal regularization is employed to minimize jitter. The
amount of regularization is a design parameter, and controls
a trade-off between precision and smoothness. In contrast to
object tracking, smoothness is of paramount importance in
camera control: fluid movements which maintain adequate
framing are preferable to erratic motions which pursue per-
fect composition.

Model-free estimation methods, such as random forests,
are very popular because they can be learned directly from

Figure 1: Camera Planning. The objective is to predict
an appropriate pan angle for a broadcast camera based
on noisy player detection data. Consider two planning al-
gorithms (shown as blue and red curves in the schematic)
which both make the same mistake at time A but recover to a
good framing by C (the ideal camera trajectory is shown in
black). The blue solution quickly corrects by time B using
a jerky motion, whereas the red curve conducts a gradual
correction. Although the red curve has a larger discrepancy
with the ideal motion curve, its velocity characteristics are
most similar to the ideal motion path.

data. Often, the estimator is learned within a time indepen-
dent paradigm, and temporal regularization is integrated as
a post-processing stage (such as a Kalman filter). However,
this two stage approach is not ideal because the data-driven
estimator is prevented from learning any temporal patterns.
In this paper, we condition the data-driven estimator on pre-
vious predictions, which allows it to learn temporal patterns
within the data (in addition to any direct feature-based re-
lationships). However, this recursive formulation (similar
to reinforcement learning) makes the problem much more
difficult to solve. We employ a variant of the ‘search and
learn’ (SEARN) algorithm to keep training efficient. Its
strategy is to decouple the recursive relationships using an
auxiliary reference signal. This allows the predictor to be
learned efficiently using supervised techniques, and our ex-
periments demonstrate significant improvements when us-
ing this holistic approach.

Problem Definition In the case of camera planning, we
assume there is an underlying function f : X �� Y which
describes the ideal camera work that should occur at the

1

Figure 1: Red line represents
a smoother simulated feed-
back of an imperfect trajec-
tory compared to blue line

Imitation learning relies on the expert providing feedback during each
roll-out of the exploration policy (Line 6). Expert feedback pyt reflects
what a human expert would have done given current (imperfect) state
st, and the most general way to acquire pyt is to query the expert ⇡‹ ev-
ery time. However, in the smooth imitation regime, we can relax this
requirement by allowing for a substantial amount of virtual simulation
of expert feedback. The simulation can compute a smooth 1-step look-
ahead correction to current state st based on actual, but limited human
demonstrator ⇡‹’s response to a state. This approach can greatly re-
duce the need for constant human expert interactions to guide the train-

3

ing. Figure 1 depicts an example where our policy has made a mistake at Location A, and where we
have a single demonstrated human trajectory from ⇡‹ (black line). Depending on the smoothness
requirements, we can simulate virtual expert feedback as via either the blue (less smooth) or red lin
(more smooth). In this work, we focus on smooth policies. See the appendix for more details.

The actual reduction is in Line 8, where a regression subroutine Regress returns a newly learned
policy based on current exploration states and expert feedback. In our smooth setting, the loss
function of Regress regularizes the smoothness of learning policy ⇡ in smooth policy class ⇧ via
an auto-regressor f⇡ , the parameters of which are updated at each round based on collected expert
feedback. See appendix for more details.

4.2 Theoretical Guarantee

Algorithm 1 is an extension of the SEARN approach [3], and can also be interpreted as performing
gradient desecnt in a smooth function space. The convergence rate of previous work [3] is tied to a
small and fixed learning rate �p« 1{T 3q. Our approach can remove this dependency on T for policy
class ⇧ with certain self-smooth property, thus allowing for much faster convergence guarantee. We
provide the following guarantee for our algorithm, the proof of which can be found in the appendix.
Theorem 4.1 (Policy Improvement). Assume the loss function ` is convex and Lipschitz-continuous
with contant L`, policy class ⇧ has the self-smooth property in which ⇡ P ⇧ is Lipschitz-continuous
with constant L⇧ † 1, and the quality of the base regression routine is controlled by constants � and
✏ such that `ps, p⇡psqq § ✏ and kp⇡psq ´ ⇡psqk § � for all state s. We can bound the overall policy
loss difference from the update rule ⇡new “ �p⇡ ` p1 ´ �q⇡ in Algorithm 1 as:

Lp⇡newq ´ Lp⇡q § � r✏ ´ Lp⇡q ` p1 ´ �qL`L⇧p� ` L⇧Cqs (2)

for C “ maxt�, 2�
1´L⇧

u. In particular, if � ° 1 ´ Lp⇡q´✏
L`L⇧p�`L⇧Cq , we have Lp⇡newq † Lp⇡q

5 Experimental Results

We applied our method to the setting of smooth spatiotemporal prediction for realtime camera plan-
ning [1]. The motivating application is determining where a camera should look when broadcasting
a sporting event. Given noisy tracking of players as raw input data, and associated camera angles
from professional human operator, the learning objective is to produce a policy smoothly and accu-
rate tracks the sporting event. Our algorithm produces policies that outperform the state-of-the-art
approaches [1]. In Figure 2, we present our result (right panel), in contrast to results from supervised
learning methods that ignore changing dynamics, i.e. trained with i.i.d assumption (left panel), and
methods that simply apply self-smooth regularizer (smooth filter) after supervised training (middle
panel). By adaptively selecting learning rate, our algorithm converges quickly to a good model after
only 10 rounds of exploration.

Figure 2: Left panel: Performance of standard supervised learning using independence assumption. Middle
panel: Initial round, with smooth filter after learning. Right panel: Our algorithm after 10 round

4

References
[1] P. Carr and J. Chen. Mimicking human camera operators. In IEEE Winter Conference on

Applications of Computer Vision (WACV), 2015.
[2] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified framework for classi-

fication, regression, density estimation, manifold learning and semi-supervised learning. Foun-
dations and Trends in Computer Graphics and Vision, 7(2–3):81–227, 2012.

[3] H. Daumé III, J. Langford, and D. Marcu. Search-based structured prediction. Machine Learn-
ing, 75(3):297–325, 2009.

[4] S. Ross, G. Gordon, and J. A. Bagnell. A reduction of imitation learning and structured pre-
diction to no-regret online learning. In Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2011.

5

A Virtual Feedback, Loss Function and Smooth Decision Tree Regression

A.1 Virtual Simulation of Expert Feedback

In the absence of human expert during training, we can simulate the interactive expert feedback
based on existing (but limited) human demonstration trajectory Y˚ “ ⇡‹pXq. During training,
we roll out an imperfect exploration policy ⇡ to obtain the exploration trajectory Y and associated
exploration states S “ �pX,Yq. Since policy is imperfect, exploration action yt is potentially
far off from real human action y˚

t given raw input xt. We can simulate an interactive feedback pyt
that is a smooth recovery from current state st such that pyt is a smooth transition from previous
time steps along exploration trajectory yt´1:t´⌧ , while moving closer to the correct human actions
y˚
t , y˚

t`1, There are multiple ways to computationally simulate the expert feedback to satisfy
this objective. In our implementation, we chose the expert correction to be

pyt “ y˚
t ` e´�pyt ´ y˚

t q
where y˚

t is the human response to input xt, yt is the current exploration action, and the parameter
� ° 0 dictates how aggressively the simulated expert is recovering the demonstrated human trajec-
tory. (i.e. larger � implies less smooth recovery). Intuitively, if at time t we allow the simulated
expert takes over the exploration trajectory, this formulation will let the simulated expert to converge
to real human trajectory exponentially fast, albeit at different degrees of smoothness depending on
parameter �. Note that various other computational regimes will work to simulate the expert. The
only strict requirement is that the simulated feedback pyt should inch closer to ground truth y˚

t com-
pared to imperfect exploration action yt. However, smooth correction of expert is important for the
stability and smoothness of the new learning model.

A.2 Loss Function Design

For an exploration policy ⇡ with corresponding rolled-out trajectory Y “ tytuTt“1, we form explo-
ration states S “ �pX,Yq and collect expert feedback pY. A base regression routine is then called
to learn a new model (line 8 of algorithm 1). The loss function used for this regression should sat-
isfy the dual goal of smoothness and accuracy. We approximate the smoothness of the curve by a
smooth auto-regressor f⇡ that satisfies yt « f⇡ pyt´1:t´⌧ q. In the loss function f⇡ acts as a smooth
regularizer, the parameters of which can be updated at each around based on expert feedback pY
(line 7 of algorithm 1) according to fp⇡ “ arg minf pk pY ´ fp pYqkq. The regression routine should
optimize the trade-off between yt « pyt (expert label) versus smoothness as dictated by regularizer
f⇡ . With regularization parameters defined for fp⇡ , the base regression routine will train a new policy
⇡ using the joint loss function Lp⇡q “ LDp⇡q ` wLSp⇡q “ kY ´ pYk

2 ` wkY ´ fp⇡pYqk2. Here
w is a hyper-parameter that controls how much we care about smoothness versus absolute accuracy
relative to expert trajectory pY.

The nature of f⇡ varies depending on application domains. In our broadcasting example, our
smoothness regularizer f⇡ is a linear auto-regressor based on previous ⌧ frames, where ⌧ is the
number of time steps with which an imperfect trajectory can be smoothly recovered by an expert’s
correction. In this setting, f⇡ is parameterized by a set of smoothness coefficient c⇡ “ rc1, . . . , c⌧ s
such that given a trajectory Y, c⇡ is the minimizer of smoothness loss LSpYq “ ∞T

t“1pyt ´∞⌧
i“1pciyt´iqq2 (via least squares fit), and f⇡ “ f⇡ pyt´1:t´⌧ |c⇡q “ ∞⌧

i“1 ciyt´i. With the smooth
coefficients c⇡ determined, the base regression routine will train a new policy ⇡ using the joint loss
function Lp⇡q “ LDp⇡q`wLSp⇡q “ ∞T

t“1pyt´pytq2`w
∞T

t“1pyt´∞⌧
i“1 ciyt´1q2, where pyt is the

expert feedback at time t, yt is the trajectory the regression routine needs to learn, and w is a pre-set
parameter that trade-off smoothness versus absolute accuracy. In the next section, we develop an
extension of traditional decision tree-based ensembles to accommodate this joint loss function.

A.3 Smooth Regression Tree

Empirically, decision tree-based ensembles are among the best performing supervised machine
learning method [2]. Due to the piece-wise constant nature of decision tree-based prediction, the
results are inevitably non-smooth. We provide an extension to classical decision tree-based regres-
sion, where prediction at leaf node is not necessarily a constant, but is a function of both static leaf

6

node prediction and input features. Let the generic input and output space be I and O respectively.
We denote and decouple the input features to the predictor by � “ xu, vy P I where u and v are both
(multi-dimensional) vectors, but v is the vector of dependent input features that influences the pre-
diction. Let the generic output value be y. For the ease of presentation, we view y P R1. However,
the framework can easily be generalized into multi-dimensional output space. We have a training
data set T S “ tpxut, vty, ytqNt“1u. In the traditional decision tree setting, the algorithm learns a
function T : I fiÑ O such that at test time, given a new input to the predictor �test “ xutest, vtesty,
T would take xutest, vtesty to navigate to a terminal leaf node that contains a subset of training data
P Ä T S and outputs a constant (average) prediction ypredict “ 1

|P|
∞

p�t,ytqPP
yt. We extend this

framework such that the prediction made at terminal leaf node is a function of both the static predic-
tion and dependent input features vnew. This framework is appealing as the base regression routine
in our algorithms should handle a loss function that depends on both output values and certain input
features.

Recall that in traditional regression tree, the training goal is to predict ŷt “ arg miny LT Spyq from
input �t such that to minimize the global loss LT Spyq “ ∞

t
py ´ ytq2 “ ∞

t
Dpy, ytq where D

is the usual squares distance loss. In our new setting, we want to additionally approximate ŷt «
fpvtq on top of the usual objective ŷt « yt. We modify the loss function to incorporate both
objectives and seek to minimize instead LT Spyq “ ∞

t
Dpy, ytq ` Spyt, ztq where we have fpvtq “

arg min
y

Spy, vtq. A natural choice is to simply set D and S to be the squared loss function to

yield closed-form solutions. In our broadcasting application, we choose Dpy, ytq “ py ´ ytq2 and
smoothness loss Spyt, ztq “ wpyt ´ fpztqq2, yielding LT Spyq “ ∞

t
py ´ ytq2 ` wpyt ´ fpztqq2,

where w is a hyper-parameter that controls how much we care about the loss given by S relative to
D.

Setting terminal node value. Given a terminal leaf node with training data P Ä T S , we want to
set a node value ȳnode such that

ȳnode “ arg min
y

LPpyq “ arg min
y

ÿ

p�t,ytqPP
Dpy, ytq ` Spyt, vtq

“ arg min
y

ÿ

p�t,ytqPP
py ´ ytq2 ` wpyt ´ fpvtqq2 “

∞
p�t,ytqPP

yt

|P|
(3)

which is the simple average of output values within subset P . Note that this is not necessarily the
same as terminal node values in traditional decision trees due to the presence of Spyt, vtq during
splitting.

Making Prediction. Let input to the predictor at test time be �test “ xutest, vtesty. We use input
features utest and vtest to navigate to a terminal node, representing by subset P of the training data.
The prediction ypredict is made such that

ypredict “ arg min
y

Dpy, ȳnodeq ` Spy, vtestq “ arg min
y

py ´ ȳnodeq2 ` wpy ´ fpvtestqq2

“ ȳnode ` wfpvtestq
1 ` w

where ȳnode is set according to equation (3).

Training and Node Splitting Mechanism: For a node representing a subset P of the training data,
the node impurity is defined as:

Inode “ LPpȳnodeq “
ÿ

p�t,ytqPP
Dpȳnode, ytq ` Spyt, vtq “

ÿ

p�t,ytqPP

“
pȳnode ´ ytq2 ` wpyt ´ fpvtqq2

‰

where ȳnode is set according to equation (3) over p�t, ytq’s in P . At each possible splitting point
where P is partitioned into Pleft and Pright, the impurity of the left and right child of the node
is defined similarly. As with normal decision tree, the best splitting point is chosen as one that
maximizes the impurity reduction: Inode ´ |Pleft|

|P| Ileft ´ |Pright|
|P| Iright

7

B Theoretical Analysis

In this section, we provide the proof to theorem 4.1. Let T be the trajectory horizon. For a policy
⇡ in the deterministic policy class ⇧, given a starting state s0, we roll out the full trajectory s0

⇡›Ñ
s1

⇡›Ñ . . .
⇡›Ñ sT . Let `ps, aq be the loss of taking action a at state s, we can define the trajectory

loss of policy ⇡ from starting state s0 as

Lp⇡|s0q “ 1

T

Tÿ

t“1

`pst, ⇡pstqq

For a starting state distribution D, we define policy loss of ⇡ as Lp⇡q “ Es0„DrLp⇡|s0qs. To
simplify notations, we define st “ rxt, ⇡pst´1qs where xt encodes the featurized input at current
time step, and ⇡pst´1q encodes the dependency on previous predictions. Our results easily extend
to the case where st depends on previous ⌧ predictions. We skip the subscript to consider general
policy update rule within each iteration

⇡1 “ ⇡new “ �p⇡ ` p1 ´ �q⇡ (4)

where ⇡ is the current policy (combined up until the previous iteration), p⇡ is the learned model
from calling the base regression routine RegresspS, pY|fp⇡q. Interpolation parameter � is adaptively
chosen in each iteration. We are interested in quantifying the policy improvement when updating ⇡
to ⇡1. Specifically, we want to bound

� “ Lp⇡1q ´ Lp⇡q
Note that Searn [3] and Dagger [4] provide bounds for � that are generally positive, meaning the
policy does not degrade too much after each update. In our analysis, we point out choices of � where
learning policies can strictly improve.

Based on update rule (4), consider rolling out ⇡1 and ⇡ from the same starting state s0 to obtain two
separate trajectories ⇡1 fi›Ñ rs0 Ñ s1

1 . . . Ñ s1
T s and ⇡ fi›Ñ rs0 Ñ s1 . . . Ñ sT s. We will bound

the loss difference of old and new policies starting from same state s0

�ps0q “ 1

T

Tÿ

t“1

`ps1
t, ⇡

1ps1
tqq ´ `pst, ⇡pstqq

Assume convexity of ` (e.g. sum of square losses):

`ps1
t, ⇡

1ps1
tqq “ `ps1

t, �p⇡ps1
tq ` p1 ´ �q⇡ps1

tqq
§ �`ps1

t, p⇡ps1
tqq ` p1 ´ �q`ps1

t, ⇡ps1
tqq

Thus we can begin to bound individual components of �ps0q as

`ps1
t, ⇡

1ps1
tqq ´ `pst, ⇡pstqq § �`ps1

t, p⇡ps1
tqq ` p1 ´ �q`ps1

t, ⇡ps1
tqq ´ `pst, ⇡pstqq

Let the upperbound on loss of learned model p⇡ be ✏ such that @t: `ps1
t, p⇡ps1

tqq § ✏, we then have:

�ps0q § �✏ ´ �Lp⇡|s0q ` p1 ´ �q 1

T

Tÿ

t“1

“
`ps1

t, ⇡ps1
tqq ´ `pst, ⇡pstqq

‰
(5)

§ �✏ ´ �Lp⇡|s0q ` p1 ´ �q 1

T

Tÿ

t“1

L`k⇡ps1
tq ´ ⇡pstqk (6)

for L`-Lipschitz loss function `.

Recall that s1
t “ rxt, ⇡1ps1

t´1qs and st “ rxt, ⇡pst´1qs, assume the self-smooth Lipschitz property
of policy class ⇧ with Lipschitz constant L⇧ † 1, we have:

k⇡ps1
tq ´ ⇡pstqk “ k⇡prxt, ⇡

1ps1
t´1qsq ´ ⇡prxt, ⇡pst´1qsk

§ L⇧k⇡1ps1
t´1q ´ ⇡pst´1qk

Combine this with inequality (6), we have a bound for � at s0 as:

�ps0q § �✏ ´ �Lp⇡|s0q ` p1 ´ �qL`L⇧
1

T

T´1ÿ

t“0

k⇡1ps1
tq ´ ⇡pstqk (7)

8

For any state s, let the upperbound on the quality of the regression routine Regress controlled by �,
i.e. @s, kp⇡psq ´ ⇡psqk § �. Using triangle inequality, we obtain:

k⇡1ps1
tq ´ ⇡pstqk § k⇡1ps1

tq ´ ⇡ps1
tqk ` k⇡ps1

tq ´ ⇡pstqk (8)
“ �kp⇡ps1

tq ´ ⇡ps1
tqk ` k⇡ps1

tq ´ ⇡pstqk (9)
§ �� ` L⇧ks1

t ´ stk (10)

Given a policy class ⇧ with L⇧ † 1, the following claim can be proved by induction:
Claim: For C “ maxt�, 2�

1´L⇧
u, we have ks1

t ´ stk § �C

Proof. Induction on t

Combine the above claim with inequalities (10) and (7), we have

k⇡1ps1
tq ´ ⇡pstqk § �� ` L⇧�C and (11)

�ps0q § �✏ ´ �Lp⇡|s0q ` p1 ´ �qL`L⇧p�� ` L⇧�Cq (12)

Integrating (12) over starting state s0 and rearrange, we arrive at the following policy improvement
bound:

Lp⇡newq ´ Lp⇡q “ Lp⇡1q ´ Lp⇡q § � r� ´ Lp⇡q ` p1 ´ �qL`L⇧p✏ ` L⇧Cqs (13)

This means in the worst case, as we choose � Ñ 0, we have Lp⇡1q ´ Lp⇡q Ñ 0, meaning the new
policy does not degrade much, and if we choose � ° 1 ´ Lp⇡q´�

L`L⇧p✏`L⇧Cq , we obtain a strictly better
policy as Lp⇡1q † Lp⇡q.

9

