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ABSTRACT 
A V\VWeP¶V abLOLW\ WR XQdeUVWaQd aQd PRdeO a human's engagement 
during an interactive task is important for both adapting its 
behavior to the moment and achieving a coherent interaction over 
time. Standard practice for creating such a capability requires 
uncovering and modeling the multimodal cues that predict 
engagement in a given task environment. The first step in this 
methodology is to have human coders produce "gold standard" 
judgments of sample behavior. In this paper we report results 
from applying this first step to the complex and varied behavior of 
children playing a fast-paced, speech-controlled, side-scrolling 
game called Mole Madness. We introduce a concrete metric for 
engagement²willingness to continue the interaction²that leads 
to better inter-coder judgments for children playing in pairs, 
explore how coders perceive the relative contribution of audio and 
visual cues, and describe engagement trends and patterns in our 
population. We also examine how the measures change when the 
same children play Mole Madness with a robot instead of a peer. 
We conclude by discussing the implications of the differences 
within and across play conditions for the automatic estimation of 
engagement and the extension of our autonomous robot player 
into a "buddy" that can individualize interaction for each player 
and game. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces ± Natural Language; D.2.2 [Software Engineering] 
Design Tools and Techniques ± State diagrams; D.2.11 [Software 
Engineering] Software Architectures ± Languages 

General Terms 
Design, Human Factors. 

Keywords 
Multi-party interaction, child-computer interaction, group task 
engagement, dialogue systems, spoken interaction, child-robot 
interaction. 

1. INTRODUCTION 
Researchers in interaction all begin from a fundamental 
assumption: to interact one must first engage and to 
continue to interact one must stay engaged. Working from 
this assumption we tend to instantiate a methodology that, 
in the abstract, follows the same plan: gather interaction 
data, post-process and/or code the data with respect to 
engagement WR cUeaWe a ³JROd VWaQdaUd,´ find the observable 
or ³VeQVe-abOe´ feaWures in the environment that best predict 
the engagement states we want to distinguish, and use 
PRdeOV baVed RQ WKRVe feaWXUeV WR PRdLf\ WKe aJeQW¶V 
behavior in the interaction.  What the commonality of this 
description tends to ignore is that what each of us means by 
engagement is a function of how we want to use the feature 
in both sensing and acting. For some the term is closely 
UeOaWed WR ³aWWeQWLRQ´ RU ³MRLQW aWWeQWLRQ,´ is measured with 
respect to observable phenomena over short durations, and 
effects only immediate actions in the agent. This is a rich 
viewpoint; many researchers who work on conversation 
analysis and dialog systems have contributed to our 
understanding of this kind of engagement and identified 
observable cues such as facial expressions (Sidner et al. 
2005), gaze (Nakano & Ishii, 2010), and gesture and 
posture (Sanghvi et al. 2011) that can be used by an agent 
to make effective changes in its behavior. Bohus & Horvitz 
(2009) focus in further on a single critical instance of this 
kind of engagement²the signals surrounding the moment 
when users in open spaces show the intention to interact.   

The short-duration view of engagement is not unique to 
researchers in dialog interaction. Leite, for example, uses 
engagement as a binary feature to code the behavior of 
groups of children watching and listening to robots acting 
out a social scenario (Leite et al. 2015). Her goal in the 
work is to give the robots the ability to sense when children 
are disengaged. So, although she derives the feature for 
every 500 msec time slice, she does not consider 
eQJaJePeQW aV VRPeWKLQJ dLffeUeQW fURP dLVeQJaJePeQW¶V 
opposite. That is precisely the change in viewpoint we 
present in this work²engagement as a continuous, multi-
valued phenomena that is expected to wax and wane over 
an interaction. We see children as more or less engaged in 
our activities rather than engaged or disengaged, and expect 
that there are patterns of engagement over time that 
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Figure 1. A snapshot of interaction with Mole Madness. LefW: Whe gaPe aV LW aSSeaUV RQ a 40´ fOaW VcUeeQ. RLghW: FURQWaO YLeZ Rf 

two children playing the game. 
 
correspond to successful interactions and patterns that do 
not.  Such a view is clearly related to engagement in the 
short-term; we also expect that patterns of engagement in 
the large can be built by sensing different kinds of instances 
of engagement in the small.  

The work reported here is a description of the first two 
steps of the canonical process toward our goal: gathering 
interaction data and coding it with respect to patterns of 
engagement.  We describe our interactive game, Mole 
Madness, and the procedure we used to collect data from 
pairs of children playing together and one-on-one with a 
non-adaptive robot. We then turn to the coding phase, 
where we found that the large-scale view of engagement we 
want to model has unexpected implications and so discuss 
our eventual decisions and rationales in detail.  Having 
settled on a coding, we examine the patterns of engagement 
it reveals, primarily with respect to the child-child data we 
intend to use to build our models, but briefly with respect to 
the child-robot interactions as well. We conclude with a 
discussion of the vaULabLOLW\ LQ WKe cKLOdUeQ¶V beKaYLRU and 
WKe cKaOOeQJeV LW cUeaWeV fRU bXLOdLQJ a URbRW ³bXdd\´ WKaW 
can adaptively provide a positive experience for each child.  

2. MOLE MADNESS: A SPEECH-
CONTROLLED GAME 
Mole Madness is a two-dimensional side-scroller similar to 
video games like Super Mario Bros®. Each of two players 
cRQWUROV aQ aVSecW Rf WKe PROe¶V PRYePeQW WKURXJK LWV 
environment using a simple verbal command: go for 
horizontal and jump for vertical. Without speech, the mole 
simply falls to the ground and spins in place. 

A close-XS Rf WKe PROe¶V ZRUOd, aQd WZR cKLOdUeQ SOa\LQJ 
the game, can be seen in Figure 1. The environment 
contains typical kinds of objects for this style of game: 
walls arranged as barriers to go over or between, items that 
result in point gain (cabbages, carrots) and point loss 
(cactuses, birds, rocks), and the occasional special object 

(VWaU) WKaW acWV aV a bRRVW WR cKaQJe WKe PROe¶V QRUPaO 
physics. In addition to providing a familiar and fun 
experience for the players, the environment is designed to 
elicit specific patterns of speech. There are flat stretches to 
evoke isolated consecutive gos, steep walls to produce 
isolated consecutive jumps, and crevasses to get through 
and items to avoid that require coordinated and overlapping 
sequences of commands. A score bar on the screen updates 
as the mole touches the various kinds of objects. Although 
players are not given any specific goal other than to move 
the mole through the level, players typically adopt 
maximizing speed and/or points as a goal.  
   When children play together, task commands (go, jump) 
naturally occur in a broader conversational context that 
includes both non-task utterances directed to the mole 
(³ZaWcK RXW,´ ³faVWeU´) and utterances directed to the other 
SOa\eU (³ZaLW, dRQ¶W Va\ MXPS \eW,´ ³ORRN a VWaU,´ ³Ke¶V 
fXQQ\´). For the most part this side-talk is not 
conversational, in the sense that it rarely requires a verbal 
response (Lehman & Al Moubayed, 2015). Thus, in robot-
child games, the robot periodically generates but does not 
respond to these kinds of utterances. 

With respect to nonverbal behavior, the fast pace and 
visual processing demands of the game tend to reduce some 
kinds of expressiveness. Eye and head movements typically 
seen in face-to-face conversation (such as looking at the 
person being addressed, looking away to hold the floor, etc. 
(Abele, 1986)) are impractical when visual attention must 
remain on the screen. Similarly, facial expressions and body 
movements that might be interpreted as indicating interest, 
engagement, and excitement, can be absent in some 
children who become quite still with intense focus.  

From this perspective, and in tasks similar to Mole 
Madness, the perception of small-scale engagement and the 
sense-able features that signal it might be significantly 
different from what can be learned from human-human 
conversation and require an analysis of data that is specific 
to this type of interaction context. 



3. DATA COLLECTION 
In a multi-study data collection, children took part in four 
activities over the course of a one-hour period, spending 
approximately ten minutes per interaction with five-minute 
breaks. Mole Madness comprised two of the activities: 
children played once in pairs, and again, individually with a 
robot as co-SOa\eU. AOO cKLOdUeQ¶V families were 
compensated for their time. Participation took place on four 
cRQVecXWLYe ZeeNeQdV, aW WKe faPLOLeV¶ cRQYeQLeQce during 
summer vacation. 

Population. Twenty-eight children, ages 5 to 10 (50% 
female), played in pairs and one-on-one with Sammy J (a 
back-projected robot head developed by Furhat Robotics, 
Al Moubayed et al. 2012). Due to hardware failure, the 
results discussed in this paper are for the 26 children for 
whom we have complete data sets (child1-child2, child1-
Sammy, and child2-Sammy): 12 females and 14 males with 
a mean age of 8.3 years (SD = 1.2 years).  
   Children who are unfamiliar with each other or are of 
substantively different ages can have very different play 
styles and patterns of engagement than pairs who are 
familiar and/or developmentally close. Because we are 
interested in understanding the dynamics of children 
playing together and how that can guide behavior when 
each child plays with a robot who should act like a 
³bXdd\,´ we tried to eliminate these most obvious sources 
of variability across pairs. Thus as a recruiting strategy, the 
initial family contacted in each pair was asked to bring both 
their own child and a friend or sibling who was close in age. 
All thirteen player pairs were either friends or siblings, with 
a mean age difference of 7.5 months. Eleven of the thirteen 
pairs were single sex.  
 
Procedure for child-child games. Children were seated in 
fURQW Rf, aQd LQ aQ eTXLOaWeUaO WULaQJOe ZLWK UeVSecW WR, a 40´ 
flat screen where the game was displayed.   The basic 
principles of the game were explained by a confederate. 
They were told to interact with the game using their voices, 
and that the mole could be controlled by the words go and 
jump. Each child was assigned an initial role arbitrarily, and 
at a point in the middle of the game, the pair was asked to 
switch roles/use the other word. They were also told to use 
the word next when the mole reached the target flag and 

disappeared into his hole at the end of a level in order to 
bring the mole back out on a new level.  The children were 
not told to avoid speaking to each other or addressing the 
mole using other words. 

   Children were unaware that a trained wizard, located in 
another room, was using a game controller to remotely 
cRQWURO WKe PROe¶V PRYePeQWV LQ UeVSRQVe to their gos, 
jumps, and nexts. A wizard was used in order to avoid any 
discrepancies in the quality of the game or the interaction 
that would stem from problems in recognizing overlapping 
speech. With only auditory access to the room where the 
game was played, the wizard had no ability to anticipate the 
cKLOdUeQ¶V VSeecK, aQd QR feedbacN RQ WKe UeVXOWV Rf KLV 
actions or the status of the game play.  

The data collection took place in a child-friendly room 
with minimal hardware intrusion (Figures 1 and 2). 
Interactions were audio-visually recorded using two high 
definition cameras, and two stereo microphones. One 
camera and a stereo microphone were placed on top of the 
screen capturing a frontal view of the game players (Figure 
1-right, Figure 2), and the other capturing a back view with 
the screen and the game (Figure 1-left). All events from the 
wizard and from the game were automatically time-logged 
along with the audiovisual recordings.  
 
Procedure for child-Sammy games. The robot was placed 
in the right cKLOd¶V SRVLWLRQ Rf the same triangular 
arrangement, and the procedure was identical to the child-
child case with two exceptions.  First, no wizard was 
needed because Sammy is able to play autonomously using 
output from the game and a small microcone array as its 
only sensory input (details of the dialog design and 
structure of the system architecture can be found in (Al 
Moubayed & Lehman, 2015). The second difference was 
that Sammy always played in the go role throughout the 
activity. 

4. DATA PREPARATION 
Data recordings comprised fourteen different child-child 
games, and 28 child-robot interactions. On average, child 
pairs played for 354 seconds (SD = 65 seconds). Child-
Sammy games tended to be shorter (mean=270 seconds, 
SD=49 seconds). 

 
Figure 2. Snapshots of 6 different video file segments (simultaneous pairs from each of three different games). 

 



    All data streams (audio, video, and logs) were manually 
synchronized. The recordings were then segmented into 
JaPe OeYeOV, OeYeO WUaQVLWLRQV, aQd ³off-task,´ the latter 
defined as any talk or interaction with the confederate. Such 
events occurred, for example, when a level ended and the 
children had to be reminded to use the word next to 
continue, or during play when a child turned to the 
confederate to ask questions or request help. Because we 
are interested in understanding and modeling engagement in 
the game, level transitions and off-task segments were 
removed from further analysis. 

5. THE PERCEPTION OF ENGAGEMENT 
The work reported here has two primary goals: (1) to 
characterize the patterns of engagement we see in children 
playing together and (2) to provide the data from which we 
will try to determine detectable multimodal features that 
predict different levels of engagement. To those ends we 
use human coders to produce judgments and labeling of our 
audio-video recording.  

To prepare the data for coding, full recordings of game 
play were split into audio-video and video-only ten second 
segments showing either the child on the left or the child on 
the right. Separation of left and right players was done so 
WKaW MXdJPeQWV ZRXOd be baVed RQ WKe LQdLYLdXaO cKLOd¶V 
behavior without the co-SOa\eU¶V behavior for comparison. 
Figure 2 shows examples from three games. Video-only 
segments were created both to understand the relative 
contribution of audio cues to the perception of engagement 
and because audio from the unseen player could not be 
erased from the audio-video versions. 

Child-child sessions produced 822 segments under each 
of the audio-video and video-only conditions. Coders 
labeled all video-only segments in random order first, 
followed by all randomly ordered audio-visual segments. 
Video-only segments were coded first to isolate any bias in 
comparing silent segments (due to the intentional removal 
of the audio track) to files where the verbal contribution of 
the player was minimal. Coders used a tailor-made 

annotation tool that allowed efficient progression through 
the segments and easy use of the engagement scale. Three 
female coders who have experience with children received 
training on the tool and were instructed to take a break 
every 15 minutes to avoid decreased attention over time.  

Following standard practice, our coders were initially 
given a small calibration subset of the data (a 99 segment 
mixture of video-only and audio-video data randomly 
distributed across sessions) and asked to rate engagement 
using a 7-point scale that ranged fURP ³extremely 
dLVeQJaJed´ WR ³e[WUePeO\ eQJaJed´ ZLWK four specified 
labels and three intermediate points (see Figure 3). The 
unlabeled values in the scale allow coders flexibility in 
judging the behavior as lying between the meanings of the 
labeled points. Annotation values for the calibration set 
resulted in an inter-rater agreement (Krippendorff's alpha) 
value of a 0.39. Repeated experiments using the same files 
(with a gap of 24 hours), also showed low test-retest 
reliability for each annotator. 
 Low inter-rater and within-rater agreement indicates that 
whatever observable features our coders were focusing on, 
WKe\ ZeUeQ¶W fRcXVLQJ RQ WKe VaPe feaWXUeV, ZeUeQ¶W 
fRcXVLQJ RQ WKeP cRQVLVWeQWO\ aQd/RU ZeUeQ¶W PaSSLQJ WKeP 
consistently to scalar values. To counter this problem we 
needed a proxy for engagement that they could use more 
consistently. The kind of engagement we are interested in²
VRPeWKLQJ WKaW LVQ¶W binary but has an intensity that changes 
over time²is a subjective experience that we want to 
render predictable through observable features. Our coders 
may experience this kind of engagement themselves, but 
they do not regularly judge it, aV ³eQJaJePeQW´ SeU Ve, in 
others.  What they do regularly anticipate and judge is the 
willingness of a child to be moved between activities. Thus 
we created the scale shown in Figure 4 and asked coders to 
re-evaluate each segment based on how willing they thought 
the child they had watched in the segment would be to 
continue with the current activity or move to another.  

 

 
Figure 3. A 7-point scale with four degrees of engagement labeled and separated by non-labeled points. 

 
 

 

 

Figure 1. An adapted engagement scale representing the ³willingness to continue the interaction´ 7-point Likert scale, with 4 
different labels, separated by one non-labeled point. 

 
Figure 4. A proxy engagemeQW VcaOe cRdeUV XVed WR LQdLcaWe Whe ³ZLOOLQgQeVV WR cRQWLQXe Whe LQWeUacWLRQ´ baVed RQ Whe VegPeQW. 

 



There are three points to be made about the proxy scale. 
First, although this measure might differ in quality from 
what engagement is (as an internal subjective experience), it 
seeks to measure a consequence of engagement in this kind 
of interaction. Second, it asks for a situated judgment that 
our coders have experience making with the population and 
which is relevant in its own right to the issue of creating an 
enjoyable experience through an adaptable co-player. 
Third, because it is situated and it does take advantage of 
RXU cRdeUV¶ bacNJURXQdV, LW LV QRW aQ aOO-purpose proxy for 
modeling long-term, variable-intensity engagement. We 
believe that attempts to model engagement-in-the-large in 
some other types of task might also find low agreement 
among coders who use a scale that relies on the word 
³eQJaJePeQW´; bXW Ze aOVR beOLeYe WKaW a SUR[\ VROXWLRQ 
will work better only in so far as the new scale makes sense 
for the interaction, population and coders involved. 

To compare the power of the ³ZLOOLQJQeVV´ scale to the 
original, the same 99 files were presented to the three 
coders using the same tool. The newly coded data achieved 
an inter-rater agreement (Krippendorff's alpha) of 0.59. The 
increase in overall agreement was coupled with an increase 
LQ VLPLOaULW\ beWZeeQ cRdeUV¶ dLVWULbXWLRQV RYeU WKe VcaOe. 
The Minkowski distances between distributions for each 
pair of coders were 0.25, 0.29 and 0.49 with the 
³eQJaJePeQW´ scale, but 0.11, 0.17 and 0.06 with 
³ZLOOLQJQeVV.´  

Given these improvements, the entire data set was then 
coded by all three coders XVLQJ WKe ³ZLOOLQJQeVV´ VcaOe, 
video-only first, aV SUeYLRXVO\ deVcULbed. KULSSeQdRUf¶V 
alpha for the complete data set was 0.58, comparable to the 
training set. While this value indicates better agreement 
than we would expect to get fURP WKe ³eQJaJePeQW´ VcaOe, 
and compares favorably with inter-rater agreement for 
engagement measures reported by Oertel (2010) (k = 0.56, 
10-point scale, 30 raters) and Leite (k = 0.41, binary scale, 
two raters), it is not considered statistically strong.  Some of 
the variability between coders no doubt comes from real 
differences in how they view the behavior in relation to the 
labeled portions of the scale. But a closer analysis shows 
that the reliability statistic may be reflecting primarily 
differences in degree rather than kind. The unlabeled 
intermediate points on both scales are implicitly defined as 
³abRXW KaOfZa\ beWZeeQ WKe WZR OabeOed YaOXeV.´ FRU WKe 
³ZLOOLQJQeVV´ VcaOe 90% of all segments had pair-wise 
coder values that were within one point of each. In other 
words, for the majority of segments coders were 
disagreeing about the degree to which the same category 
applied. FRU WKe ³eQJaJePeQW´ VcaOe WKLV ZaV WUXe Rf RQO\ 
26% of the subsample.  

6. RESULTS AND ANALYSIS  
Despite the overall improvement in reliability that came 
from using a proxy for engagement, a conservative view 
would argue that there remains some degree of consistent 

difference across coders. In analyzing the results we could 
eliminate those differences by using a mean or median 
value for each segment, essentially creating an average 
coder. Elsewhere it has been argued that the idea of a single 
correct truth for human annotations in semantic 
interpretation tasks obscures our ability to get at the nature 
of the inherent subjectivity in such judgments and the range 
of reasonable interpretations for complex phenomena 
(Aroyo & Welty, 2015). With respect to our data, we note 
WKaW b\ beWWeU VLWXaWLQJ WKe VcaOe LQ WKe cRdeUV¶ RZQ 
experiences we may have invited some systematic 
individual differences in the judgments if each coder based 
her decisions on the observable features that she has found 
valuable in redirecting the children she knows. We do not 
know at this stage how well we will be able to predict a 
cRdeU¶V daWa ZLWK WKe feaWXUeV Ze aUe abOe WR VeQVe, QRU KRZ 
much overlap there will be in the features that best predict 
in each case. It is possible that the differences in the data 
produce no differences in the sense-able feature sets at all, 
in which case an average coder model would make sense. 
BXW LW LV aOVR SRVVLbOe WKaW RQe cRdeU¶V decLVLRQV caQ be 
PRUe accXUaWeO\ PRdeOed JLYeQ cXUUeQW VeQVRUV; Lf WKaW¶V 
true we may choose to model a particular way of measuring 
long-term engagement even though it gives rise to some 
judgments with which the average coder would not agree. 
Given this possibility, we choose to preserve the individual 
differences at this point in the process. To continue here, 
then, we discuss general results that hold across coders but 
choose a representative coder, Coder 2, to present the 
cKLOdUeQ¶V SaWWeUQV fURP a VLQJOe cRKeUeQW YLeZ. 

6.1 Audio-video versus video-only trends 
Recall that each coder judged every segment both with and 
without audio. Every coder gave an average score across all 
segments that was higher in the case of audio-visual cues. In 
SaUWLcXOaU, CRdeU 2¶V YaOXeV UePaLQed XQcKaQJed fRU 57% 
of the child-child segments, increased for 29% of segments 
when sound was present, and decreased in 14% of cases. 
The absolute percent of changed versus unchanged values 
differed for the other two coders, but the relative split of 
twice as many increasing as decreasing when there was 
change, held. Almost all children (at least 25/28 for each 
coder) received some bump in their mean engagement score 
from audio, although some children clearly benefited more 
than others. Further, how much of a bump an individual 
child received depended on coder, reinforcing the idea that 
individual coders cared differentially about the presence or 
absence of specific audio and visual cues.  

6.2 Engagement trends  
Considered in pairs, we found no correlation between the 
average engagement level of one child and the average 
engagement level of the second for any coder. In turning to 
a more finely grained view, Figure 5 shows the engagement 
plots for both children in each of the child-child games, 



 

 
Figure 5. Plots of the engagement trends (engagement over time) for each of the 14 different Mole Madness games. Each plot 

shows the audio-visual data for Coder 2 and a linear fit for a pair of children that played the game together. The plots are 
arranged in order of similarity and convergence showing large variability across children and games.  Two games show 

divergence in the engagement of the children (the last two plots), while the remainder show a pair with steady or increasing 
engagement, or one child converging toward the child with the higher engagement. 

 

XVLQJ CRdeU 2¶V aXdLR-visual values. The plots also show a 
linear fit for the data of each child.  
    The graphs show large variability in levels of 
engagement and in engagement patterns, both within and 
across games, despite the fact that all pairs of children were 
familiar with each other, were of similar age, typically the 
same gender, and played the same game. Four patterns 
occur to different degrees. The top row of Figure 5 groups 
players who maintain similar engagement values over time, 
with both enjoying an increasing trend over the course of 
the game. The middle two rows show players that also 

maintain a similar pattern of engagement, but because their 
values hold steady. The bottom row shows the last two 
patterns, defined by players who start and/or end at 
different engagement levels. The two pairs at the left have 
one child converge toward the other as the game unfolds, 
while the two pairs on the right show players that diverge 
over the course of the game.  If the values do reflect 
VRPeWKLQJ PeaQLQJfXO abRXW WKe cKLOdUeQ¶V LQWeUQaO VWaWe, 
then clearly the emotional arcs experienced by our 
participants are not all positive. Equally clearly, some 
interactions were more successful than others, at least in the 



sense that both players enjoyed a high or increasing desire 
to remain engaged in the experience over time.  
   The variability we Vee LPSOLeV WKaW WKeUe LV QR ³aYeUaJe´ 
SOa\eU aQd QR ³caQRQLcaO´ LQWeUacWLRQ ZLWK respect to 
engagement²the game and co-player afford a range of 
experiences.  A robot peer that cannot detect and track 
changing levels of engagement and flexibly adapt its 
behavior to coordinate with them, is unlikely to produce an 
optimal experience for each child.    

7. CHILD-SAMMY INTERACTION 
As mentioned, each child also played Mole Madness with 
an autonomous but non-adaptive robot, Sammy J, in the go 
role. In this section we briefly explore WKe cRdeUV¶ 
SeUceSWLRQV Rf WKe cKLOdUeQ¶V willingness to continue to 
engage with the robot as co-player. Again, we use Coder 2 
as our specific representative when one is needed.  

The mean engagement score over all segments was lower 
for the child-Sammy sessions for all coders, although the 
difference for Coder 2 was negligible (3.78 to 3.75). As in 
the child-child games, audio-visual scores tended to be 
higher than video-only MXdJPeQWV fRU aOO cRdeUV. CRdeU 2¶V 
remained unchanged for 50% of segments, increased for 
35% and decreased for 15%. And as before, most children 

benefited although some children benefited more than 
others, and which children did depended on the coder.  For 
any given coder, there was no correlation between those 
who benefited from audio in the child-child condition and 
those who benefited with Sammy. We conjecture that there 
may have been individual differences in aspects of the 
cKLOd¶V YRcaOL]aWLRQV ZLWK fULeQd YeUVXV URbRW, aQd LQWeQd WR 
explore that possibility in future work. 
 We also examined the engagement trends of children in 
the child-robot condition. Although space precludes a 
complete side-by-side comparison, Figure 6 shows 
examples for six children when playing with Sammy, 
repeating the child-child graph for each pair. Despite the 
cumulative statistic being nearly identical, for many of the 
children, the game felt quite different. For children with flat 
or decreasing engagement, the ability of the system to 
detect the situation as it changes (or fails to change) and 
adapt its behavior to influence the long-term pattern seems 
critical to an emotionally successful interaction. 

8. DISCUSSION AND FUTURE WORK 
The work presented in this paper constitutes only a first step 
towards understanding how to detect, model and influence 
engagement in interactive spoken games with children. We 

 
Figure 6. Three examples of trends across peer conditions. Top row is the engagement of two children playing Mole Madness 

together. Lower two rows are the engagement trends of the same children when each played separately with Sammy. 



treat engagement as a variable quantity that can rise and fall 
gradually over the course of an interaction, rather than as a 
single description of the interaction as a whole, or a binary 
moment-to-moment correlate of attention.  We described 
our method and decision process in arriving at a more 
useful way to elicit engagement judgments via a proxy scale 
WKaW bRWK VLWXaWeV WKe cRdeU¶V WaVN LQ PRUe cRQcUeWe 
language and allows us to characterize the rise and fall of 
the measure over time. AOWKRXJK WKe ³ZLOOLQJQeVV´ VcaOe 
offered better inter-rater reliability among coders, and was 
comparable to what some other researchers have found, 
standard statistical measures were not high enough to 
conclude that all values meant exactly the same thing. We 
did find that most of the differences between coders 
corresponded to differences in degree rather than kind, but 
we do not know whether the differences in judgments 
ultimately correspond to substantively different mixtures of 
sense-able features in the environment. A clear next step to 
this work is to build models based on audio and visual 
features that predict the different levels of engagement, both 
to Vee ZKeWKeU WKe cRdeUV¶ dLffeUeQceV PaWWeU in practice and 
to give Sammy the ability to see what the coders see. 

A closer examination of RQe cRdeU¶V daWa UeYeaOed 
variability of engagement level within a game as well as 
variability in overall patterns across different players as a 
function of both time and co-player. We have begun the 
work of exploring whether linguistic entrainment and other 
types of acoustic coordination are more or less present in 
what seem to be the desirable patterns and trends. Indeed, 
for the subset of this data for which we have high quality 
audio without dropout (eight pairs), we have found that 
some verbal and acoustic features demonstrate significantly 
more synchrony when the children are in a high engagement 
state (Chaspari et al, 2015). To respond in kind, SaPP\¶V 
repertoire of behavior will need to be extended to produce 
comparable signals. When added to the ability to sense 
what path the child is on, such adaptive behaviors can be 
used to reinforce or change that movement in peer-like 
ways. The patterns of behavior in the current data, both 
child-child and child-robot, present a backdrop against 
which we can meaVXUe SaPP\¶V JURZWK WRZaUd SURdXcLQJ 
more satisfying interactions for all children. 
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