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Figure 1: With rig-space neural rendering, we train a deep neural network (DNN) to generate an image of a character
directly from rig parameters, such as skeleton joint angles, or lattice cage positions. We first generate the training set
(blue area) by posing the character in many poses and views, while saving the rig parameters associated to the images.
We then train a DNN to generate the character image from the rig parameters (red area). Finally, at run-time (green
area) we control the rig parameters and feed them to our Rig2Image network that generates an image in real-time, which
we then overlay onto scene background. Details on how to extend this to dynamic lights and interactions with other
scene objects are shown in figures bellow.

ABSTRACT

Movie productions use high resolution 3d characters with complex proprietary rigs to create the
highest quality images possible for large displays. Unfortunately, these 3d assets are typically
not compatible with real-time graphics engines used for games, mixed reality and real-time pre-
visualization. Consequently, the 3d characters need to be re-modeled and re-rigged for these new
applications, requiring weeks of work and artistic approval. Our solution to this problem is to learn a
compact image-based rendering of the original 3d character, conditioned directly on the rig parameters.
Our idea is to render the character in many different poses and views, and to train a deep neural
network to render high resolution images, from the rig parameters directly. Many neural rendering
techniques have been proposed to render from 2d skeletons, or geometry and UV. However these
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require manual work, and to do not remain compatible with the animator workflow of manipulating
rig widgets, as well as the real-time game engine pipeline of interpolating rig parameters. We extend
our architecture to support dynamic re-lighting and composition with other 3d objects in the scene.
We designed a network that efficiently generates multiple scene feature maps such as normals, depth,
albedo and mask, which are composed with other scene objects to form the final image.

1 Introduction

Feature movie productions use high resolution characters with complex proprietary rigs to create the highest quality
possible images for large displays. It is very often the case that these characters would be wanted and useful in a
real-time setting, such as for previs, games or augmented reality experiences. Unfortunately, the high resolution assets
cannot be rendered in real-time and the production rigs are often not easily transferable to game engine deformers (i.e.
linear blend skinning and blend shapes). In consequence, characters must re-created manually including re-modeling
their geometry with fewer polygons, re-creating textures with fewer details and re-rigging and re-animating their
movements. This process can be longer than expected, as the initial artistic intent of the character may be lost in one or
several of these steps.

q

a) rig control b) network predictions c) scene composition

Figure 2: a) Real-time applications control a skeleton or rig, as usual by blending skeletons, or by live capturing a
human performer. b) The skeleton is then fed to our Rig2Image network that renders scene maps in real-time. c) These
scene maps are then composed with dynamic lights as well as other scene objects in front and behind via the depth map,
resulting in a final coherent scene.

Our solution to this problem is to treat the rendering of the character as a learned image-based rendering task,
conditioned on 3d rig parameters such as a kinematic skeleton, blend shapes, or coarse mesh vertices. Our approach
consists in rendering the 3d character in different 3d poses and views, and to save the corresponding 3d rig information
as labels. We then train a deep neural network (DNN) to predict the rendered image from the 3d rig parameters. To
allow dynamic lighting and scene composition, as well as produce high resolution images, we designed a progressive
multi-branch generative network that outputs albedo, normals, mask and depth map. The different scene feature maps
can be composed together with other scene elements (e.g. through a depth buffer test) to render the final image of the
scene with the character in it. At run-time, the application manipulates the rig parameters, such as the skeleton via
traditional spline interpolation, and feeds the parameters to the network to produce the required scene feature maps in
real-time.

One of the main challenges with image-based rendering are ghosting effects during interpolation and extrapolation to
new views and movements. This is especially the case when undergoing large deformations, such as with articulated
systems. We evaluate both pose and view generalization capabilities, and show results in our accompanying video. In
a nutshell, our network architecture (section 4) and data generation process (section 3) achieves qualitatively good
generalization for interpolating views, but remains challenged by extrapolating new movements, never seen in the
training data. Before we discuss our approach in detail, let us now discuss relevant work.
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2 Related Work

One of the main benefits our approach brings over traditional image-based rendering [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
and more recent forms of learned rendering [11, 12, 13, 14, 15], is that we do not carry intermediate geometry or
pre-computed image dataset.

Image-based rendering.

Early work in image-based rendering focused on rendering new viewpoints of static objects and scenes undergoing
rigid transformations, from a sparse set of images [1, 2, 3].

The idea of combining view-dependant texture maps with proxy geometry to interpolate sparse viewpoints came as
early as 1996 [1, 2]. For static objects, a proxy shape with scene texture can efficiently interpolate camera views [1],
while light fields parameterize the view space [2] w.r.t. two parallel rectangles. These ideas were then extended to
support unstructured geometries [3].

In the case of characters and articulated systems, one needs to interpolate not only views but also pose. Early work
would segment out actors from video, and re-enact them [4, 5], whilst in the same view. To interpolate new views, [6]
introduced a character mesh with view-dependant texture blending, which was computed from multiple video footage.
Subsequent work seek to blend across poses [7, 8, 9, 10]. These methods employ a proxy mesh whose edges can be
perceived and require a heavy memory footprint when keeping the video data.

In contrast, deep neural networks require much less memory as they succinctly compresses the pose-dependant
appearance space, and have shown promising results recent years.

Figure 3: Our Rig2Image architecture for high resolution images from rig parameters. The network takes as input rig
parameters and first maps them to a fixed size (512) latent vector via a fully connected layer. These 1× 1× 512 features
then go through multiple convolutional blocks which double the dimensionality of the features, up to 1024× 1024. To
converge, we employ a training curriculum: we first train the backbone of the network up to an image resolution of
16× 16, then we train the convolutional blocks that increase the resolution, one at a time.

Neural image-to-image translation using Adversarial Learning

The core innovation behind these new methods is the ability to train a deep generative network in a semi-supervised
manner (without paired correspondences) using adversarial learning [16]. A set of images from one domain can be
translated into a target domain [11], such as the image of a skeleton into the image of a person [12, 13].

This approach however is conditioned on flat 2d skeletons without proper 3d orientation information, leading to
ambiguities between front and back for example. As a result, undesirable artefacts may appear as the limbs and body
turn.

The other issue with adversarial learning is the limitation to a rather low image resolution, such as 256× 256. To reach
higher resolutions, [17] used an effective progressive training scheme, in which up-scaling convolutional blocks are
progressively trained, one image resolution at a time.

Subsequent work seek to reach high quality, high resolution rendering, but by using paired images provided by the
pre-rendering of proxy geometry.

Image-to-image translation with a proxy mesh

To circumvent both the limitation to low resolution images associated with adversarial learning, and to remove
ambiguities due to flat 2d maps (e.g. 2d skeletons missing 3d surface orientation), methods have utilized paired images
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produced by first rendering coarse geometry [18, 14, 19, 15, 20] and then translating to the corresponding real-world
counter-part.

The rendered geometry allows to condition the network with less ambiguous data: a UV map [19], a low resolution
avatar with patterned clothing [14], a rendered 3d skeleton [15], or noisy captured albedo and normals [18, 20]. All
these methods first render the 3d geometry and thus require creating and manipulating this intermediate object in
their pipeline. In contrast, we directly learn from rig parameters, to render high resolution, free of surface orientation
artefacts images of articulated characters.

Learned Scene Representations and Rendering

Closest in spirit to our work is the approach of [21], which introduced the idea of learning a rendering conditioned on
a latent low dimension scene vector, and camera configuration. Their work is focused on learning a compact scene
representation from set of low resolution images, while we are focused on learning from artistically authored rig
parameterazations and high resolution rendering of objects undergoing articulation.

A similar and interesting line of work is that of [22], which learn a scene representation from a set of images via a
differentiable volume ray caster. Their networks turn multiple images into a latent vector (modeled as a multivariate
Gaussian distribution), which is decoded into a volume, which in turn is rendered via volumetric ray casting. The
volume can be rotated and thereby generalize to new in-between views and motions. It would be interesting to see
if such a volumetric representation could be learned from rig parameters, or if encoding the rig parameters into an
identically and independently distributed latent vector (as with variational autoencoders) helps generalize better to new
movements.

3 Dataset

Our approach requires a full image capture of the character in different poses and views. We take a 3d model of the
character, together with a pose dataset defined in rig space q (detailed bellow), and render each pose in many different
camera views c. Note that we use the rendering software as is, and automate the posing and rendering via scripting.

To avoid redundant pose information, we transform rig parameters q into camera space: q̃ = c−1q. As rigs, we
experimented with kinematic skeletons defined as positions and orientations, and produced all results using only the
orientation of joints. We postulate other traditional rigs such as vertex-based elements, would be sufficient—insofar they
are dense enough to model the orientation of each limb. Blend shapes would also work, as long as they are combined
with pose information to account for articulation and viewing.

Our network takes as input rig parameters in view space q̃ and outputs feature maps I = {Ii}, such as the RGB albedo
Ia and occupancy Im mask of the character. To support dynamic lighting and scene composition with other scene
elements, we need additional feature maps such as normals In and depth Id, as described in our network extension
section 4 and scene composition section 5. Hence when rendering the character, the rendered maps I are save together
with the corresponding rig parameters q̃.

In the event that a rig would be too high dimensional for practical real-time use, we propose to parameterize a kinematic
skeleton (joint positions and orientaitons) w.r.t. to the high dimensional rig, and to save the reduced skeleton subspace q̃
instead of the full rig space. While this parameterization would require additional work for the setup, it remains less
laborious than re-creating a full character mesh, rig, and re-animating each movement.

4 Rig2Image Network

Our network takes the rig parameters q̃ directly as input, and outputs an image I of the character in the given rig’s pose.
The challenges with designing such a network are first convergence while learning to generate high resolution detailed
images, and second to efficiently generate several scene maps I such as I = {Ia, In, Id, Im} albedo, normals, depth,
mask, etc. We first detail how to architect and train a model for generating a single high resolution image Ia, and detail
in section 4 how to efficiently extend the architecture to multiple maps.

To converge at learning high resolution images, we build upon previous explorations, by using the progressive training
scheme of [17], and adapting the generative network to arbitrary rig parameters. We first map the rig parameters q̃ to a
fixed sized feature vector using fully connected layers. Then we increase the spatial resolution of the features using
multiple convolutional blocks, each doubling the spatial resolution, as shown in Fig. 3.
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Figure 4: To predict feature maps such depth, normals, and mask, which are required for dynamic re-lighting and
composition, we extend the network architecture to two main branches: an image branch for albedo, and a geometric
branch for strongly correlated features such depth, normals and mask. Layers generating features up to 8× 8 are shared,
then split to produce higher resolutions. As before, we train the backbone part of the network up to 16× 16 resolution,
referred to here as PL1. Subsequent blocks PLi in each branch progress in parallel, trained one at a time, where the
respective output layers (toRGB, toDepth, toNormals, toMask) are only active at the currently trained resolution.

Training this entire model up to full resolution from scratch fails to converge, resulting in large artefacts such as missing
limbs and large holes in the character. We found empirically that convergence is best reached by first training the
network to a resolution of 16× 16, and to then progressively train each subsequent block, one by one.

As training loss L (I, Igt), we minimize the error between the predicted image I and the ground truth image Igt. We
used a weighted combination of L2 and L1, as follows:

L (I, Igt) = (1− α) · L2 (I, Igt) + α · L1 (I, Igt) ,

where L1 tends to help increase sharpness slightly, and α is set to 0.1 in all our experiments.

Training with these losses leads to images that can remain blurry. To increase details, we experimented with losses from
related work such a saliency loss [18] and multi-scale losses such as the perceptual loss [23]. We obtained marginal
increase in detail with these experiments. The multi-scale perceptual loss, which comes from a pre-trained network on
natural images, injects textures closer to natural images and is thereby better suited for organic, photo-realistic images.
A perceptual loss generated from a network trained on synthetic images, artistically similar to the character, may offer a
bigger benefit and is left for future experimentation.

Now that we can successfully generate a high resolution image from rig parameters, we describe how to efficiently
generate multiple scene maps requires for scene composition.

4.1 Multi-map Network for Dynamic Scene Composition

To enable dynamic lighting, as well as dynamic composition with other scene objects, our network needs to be able
to generate different feature maps such as normals In, depth Id, mask Im, etc., together with the usual albedo Ia, in
an efficient manner. For example, training independent networks for each map, significantly increases training time,
and quickly reaches hardware constraints such as GPU memory. Additionally, since these feature maps are similar by
nature, it is likely that they share deeper representations that could be more efficiently encoded in a common network.

In fact, certain feature maps such as depth, normals and mask are correlated and can be computed from one another; e.g.
normals can be computed from depth by computing gradients, and a mask is a simple binary test from either depth or
normals. Hence, we designed an architecture that shares deep representations up to the 8× 8 features, then branches
into two separate branches: one for albedo and one dedicated to geometric information such as depth, normals and
mask, as shown in Fig. 4. As before, we first train the network to a resolution of 16× 16, and then progress in parallel
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a) albedo b) normals c) depth d) mask

Figure 5: Example predictions (top) for the different scene maps and their according ground truth images (bottom).

on each branch, dropping the toRGB, toDepth, toNormals and toMask each time we move to the next block; up to
1024× 1024 in our experiments. Fig. 5 shows an example of the predicted feature maps.

Using the scene maps Ia, In, Id, Im, we now describe how to integrate our learned character rendering into existing
scenes.

5 Scene Composition

At run-time, the application manipulates the rig parameters, for example by blending poses via a game controller, or via
data from a motion capture system, as shown in Fig.2. The rig parameters q̃ are then fed to our network to generate the
feature maps I .

One way to use our method is to simply learn a fully lit character and re-render it in the same views as it was trained on.
However, to be able to compose the character with other objects in the scene (e.g. moving in front and behind), produce
dynamic lighting, we need to use our feature maps I = {Ia, In, Id, Im} and compose normals with light sources and
depth with the scene’s depth buffer.

However, to be able to move the character in the camera frame, we need to transform, or warp the feature maps as to
appear positioned at new locations in the scene, as well scale the depth values Id according to the displacements.

To create the appearance of being rendered at new positions, we treat the character as a 3d billboard moving with the
root motion of the 3d character, while facing the camera. This will automatically take into account the image-space
scale of the character. Since we trained our model with poses centered at the camera, we need to take into account
off-center viewing effects on the pose.

For off-center viewing, we compute the rotation R between the ray passing through the center point of the camera, and
the ray passing through the center point of the billboard displaced in the scene. We apply this rotation to the pose q̃,
resulting in a new pose q̂ = R q̃ that we feed to our network to generate the maps Î .

To scale the depth maps, we compute the scale s between the image-space billboard dimensions at run-time and the
image-space billboard dimensions at training time. We then scale the depth values of Îd with the inverse of s as to
increase depth as the billboard gets smaller, resulting in a new depth map Īd = s−1 Îd. Using the adjusted maps in
image space, we perform additional pixel-wise operations to compute light intensity using the normals În, and compose
with other objects using depth maps Īd.

Dynamic Lighting

To demonstrate dynamic lighting effects, we use the normal maps and compose them with light sources in the scene by
computing Phong shading [24]. We sum for each camera, the dot product between the light source pointing direction
and the normal vector. Examples with different light colors are shown in the accompanying video.
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Composition with other scene objects

When other objects move in front of the character, we need to know which pixels should be replaced by the other object’s
color. We solve this problem with a traditional graphics technique, i.e. the depth buffer [25]. Most modern renders
produce depths maps when rendering. Hence we can integrate with other systems via this depth buffer interface. The
final pixel color is the map for which the z value is the nearest from all the depth maps. Examples of this composition
are shown in the accompanying video.

6 Evaluation

We first describe the dataset we used for our results and comparisons. Using this dataset we were able to train a deep
neural network to render articulated figures at high resolutions (1024× 1024) directly from rig parameters. We then
evaluate our model on a core challenge with learned rendering, that is the generalization to new views and new motions.
We describe bellow evaluations to both, and evaluations of each can seen in our accompanying video.

Figure 6: We can see that 3d rig parameters such as skeleton joint angles are sufficient to learn a disentangled surface
map. The top row shows the character front facing, while the bottom row is the character back facing.
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Figure 7: Example albedo output of the network: (left) prediction, (middle) ground truth, and (right) error visualization.
As can be seen from the error plot, the system struggles mostly with high frequency details, such as the fine line of the
mouth.

Dataset

In each experiment, we used the same dataset. We trained a model to go from skeleton rig parameters to the rendered
image at resolution (1024× 1024). We utilized a motion library comprised of 5 minutes of small, but diverse motion
clips sampled at 60 Hz, amounting to 18k frames. We sample views at a regular interval on a circular disc around
the character. In order to compare generalizabilty to new views, we trained one model on 6 views, sampled at 60
degrees intervals, amounting to 108k images and 7 Gigabytes (GB) of data, and one model on 60 views, amounting to
1,080k images and 170 GB of data. Note that our neural network does not change and remains at a constant size of 350
megabytes.

Results on Dataset

We first evaluate the performance over the training data. We can see that our network is capable of differentiating
between front and back using the rig parameters, as shown in Fig. 6. The accompanying video and Fig. 7 show the error
between the predicted image and the ground truth. We can observe the error being larger for limb extremities, high
frequency details and edges around the character, as well as poses less represented in the dataset. For further poses see
Fig. 10 or the accompanying video.

Figure 8: Comparison of results for novel view points: a) our model trained on 6 views, b) our model trained on 60
views, and c) a standard linear interpolation from the a ground truth dataset with 60 viewpoint angles.

New views

To evaluate generalizing to new views, we synthesized 360 view transformations that we apply to a single pose from
our training data. The pose was previously seen during training, but the combination of pose and view not. We can
see that the model trained on 6 views exhibits significant non-linear morphing, but that the model trained on 60 views
yields perceptually smooth results. As a reference for comparison, we computed a standard linear interpolation of the
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60 views, and one can see in Fig. 8, as well as in our video that the interpolation remains noticeably ghosty. For a
quantitative comparison see Fig. 9, which clearly shows the benefit over the linear interpolation.

New motions

To evaluate generalizability to new movements, we tested on a separate motion clip that was not part of the training
set. We can see in the accompanying video how the network might loose a limb when a significantly different pose is
presented. Note that our first trials included the root position in the rig, and the network learned correlations specific to
this value. Hence generalization was very poor, which led us to learn only from orientations. Hence a rule of thumb is
to avoid absolute world or frame-relative rig coordinates.

One way we believe could improve generalizibilty to new motions is to train on more diverse poses, instead of
continuous motion clips. While our movements are diverse, the individual poses close to one another as a result of
being continuous movement clips, which is easier for the network to encode, then poses that would be further.

Figure 9: Quantitative error for the learned rendering over new views in blue, and linear interpolation in red. Both lines
reflect the mean over 140 poses and the shaded region the standard deviation. The learned model was trained on 6
views, hence the testing interval of 60◦.

Architecture

We experimented with alternative architectures. In section 4.1, we introduce a multi-branch network for albedo, normals,
depth and mask that shares deep layers and features. We experimented with a single branch, but this resulted in fighting
between feature maps; albedo would look like normals, or vice versa.

Many works utilize skip connections to help kernels operating on the high resolution features recover localized structures.
We tried adding skip connections from the rig parameters to further layers, but this did result in additional details.
We believe that a differentiable splatting of the rig into an image, combined with skip connections could improve the
rendering details.

7 Limitations and Future Work

In this work, we demonstrate for the first time a learned character rendering generated directly from the rig parameters
at high resolution (1024× 1024). Unlike human faces, articulated figures undergo large deformations in image space
and require powerful models to represent compactly. While we have made a step forward in this direction, our rendered
images remain blurry and could be improved with additional details.

When presenting our network with new poses, never seen before, we can sometimes see a limb fading, or morphing
artefacts. One way to improve this could be to craft a more diverse dataset, and challenge the network a bit more during
training–instead of showing continuous motion clips with each pose being similar to one another. An alternative could
be to employ a differentiable splatting function that would draw a character structure from the rig parameters, which
could help the kernels improve the rendering locally on the body parts.
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8 Conclusion

We were able, for the first time, to render an articulated character using a learned model operating directly on its
animation rig parameters. Our approach is fully automated and can take a high resolution asset rendered in its
environment and re-render it in real-time with a deep neural network running on a GPU. This now opens up new
possibilities for live rig-space previs and exciting research opportunities in real-time rendering. For example, it would
be interesting to learn representations that can be shared across similar characters. Or another line of work is stylization,
and real-time blending of digital characters into real world videos.
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Figure 10: Results of our generated images from rig parameters. On the left is the generated image, while on the
right is ground truth. We picked poses to illustrate the various motion clips we trained with. They include stretching
movements, cartwheel rolls and yoga poses.
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