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Fig. 1. We present a method to capture complete facial geometry and appearance from a single exposure. From left to right: one input image, our matching
render, diffuse albedo, specular intensity, normals, high resolution geometry, and a realistic re-render under a different environment map.

We propose a new light-weight face capture system capable of reconstruct-
ing both high-quality geometry and detailed appearance maps from a single
exposure. Unlike currently employed appearance acquisition systems, the pro-
posed technology does not require active illumination and hence can readily
be integrated with passive photogrammetry solutions. These solutions are
in widespread use for 3D scanning humans as they can be assembled from
off-the-shelf hardware components, but lack the capability of estimating
appearance. This paper proposes a solution to overcome this limitation, by
adding appearance capture to photogrammetry systems. The only additional
hardware requirement to these solutions is that a subset of the cameras are
cross-polarized with respect to the illumination, and the remaining cameras
are parallel-polarized. The proposed algorithm leverages the images with
the two different polarization states to reconstruct the geometry and to
recover appearance properties. We do so by means of an inverse render-
ing framework, which solves per texel diffuse albedo, specular intensity, and
high-resolution normals, as well as global specular roughness considering the
subsurface scattering nature of skin. We show results for a variety of human
subjects of different ages and skin typology, illustrating how the captured
fine-detail skin surface and subsurface scattering effects lead to realistic
renderings of their digital doubles, also in different illumination conditions.
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1 INTRODUCTION
Digital humans have become omnipresent in today’s entertainment
landscape, making an appearance in nearly every blockbuster movie
and triple-A video game. To create such digital characters it is com-
mon practice to 3D scan real humans, digitally capturing their like-
ness. To accomplish this, passive photogrammetry solutions have
become the method of choice for two reasons. Firstly, passive pho-
togrammetry systems can be constructed from off-the-shelf con-
sumer hardware, such as digital cameras and flashes, and are hence
much less complex and more cost effective than active technologies,
such as structured light scanning or lightstage acquisition. Secondly,
a number of software solutions exist, both commercial and open-
source, that allow to reconstruct high-quality 3D geometry from
the acquired images. This makes 3D shape acquisition readily and
widely available.

Standard photogrammetry alone, however, is not sufficient to
create photorealistic digital human assets. In addition to 3D shape,
high-quality diffuse and specular reflectance properties are also
required for realistic rendering. Furthermore, the level of geometric
detail provided by photogrammetry has been typically inferior when
compared to 3D shapes obtained with more complex setups based
on active lighting, such as lightstages [Debevec et al. 2000] and
other recent videogrammetry solutions [Gotardo et al. 2018]. Thus,
to acquire these appearance properties and fine-detail geometry,
studios and digital artists are currently forced to employ costly and
complex setups that require expert knowledge to build and operate.
As a result, high-quality appearance acquisition is currently only
viable for hero assets in high-budget productions.

In this paper, we propose the first light-weight, inexpensive,
single-shot acquisition system that can capture both high-quality
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facial appearance and 3D geometry. The proposed method can be
readily integrated with current widely employed photogrammetry
setups, requiring only minimal hardware changes. Our key result is
to effectively upgrade these widespread setups into one-stop-shop
acquisition systems for high-quality face capture.
More specifically, the captured face data consists of a single ex-

posure that is simultaneously captured by multiple, conventional
cameras located around the actor’s face. The main requirement is
that a subset of such cameras be cross-polarized with respect to in-
coming light, which provides our inverse rendering algorithms with
an effective means to separate surface and subsurface appearance
parameters. The remainder of the cameras are parallel-polarized,
allowing to sample direct reflectance information like specular high-
lights. This single-shot mixture of cross and parallel-cross polariza-
tion acts like a form of view multiplexing, where our method can
gather different information from different viewpoints and combine
it in a single inverse rendering optimization. The output texture
maps provided by our technique include fine-detail 3D geometry
(displacement map), diffuse RGB albedo, specular intensity, overall
specular roughness.

The proposed method allows to further democratize the creation
of digital human assets, making high-quality 3D shape and appear-
ance acquisition affordable for lower budget productions, realis-
tic digital avatar creation in mixed reality applications, and also
more appealing to fields outside the entertainment industry, such
as academia, psychology, or life sciences.

2 RELATED WORK
We restrict the discussion specifically to related work on facial
geometry and appearance capture and refer to recent surveys on
the topic [Klehm et al. 2015; Weyrich et al. 2009] for a more in-depth
discussion. In the following, we discuss facial capture in computer
graphics in the context of both active and passive capture setups,
employingmulti vs single-shot capture, targeting static and dynamic
facial appearance acquisition.

Active capture of static appearance: Active illumination based
techniques have long been the methods of choice for high-quality
facial capture. Debevec et al. [2000] introduced a specialized light
stage setup to acquire a dense reflectance field of a human face for
photo-realistic image-based relighting. They also employed the ac-
quired data to estimate a few view-dependent reflectance maps that
could be interpolated for viewpoint animation in conjunction with
structured light scanning of facial geometry. Weyrich et al. [2006]
employed an LED sphere with 150 lights and 16 cameras to densely
record facial reflectance and computed view-independent estimates
of facial reflectance from the acquired data including per-pixel
diffuse and specular albedos, and per-region specular roughness
parameters. They also employed a specialized skin contact probe
to estimate a skin translucency parameter based on dipole diffu-
sion [Jensen et al. 2001]. The facial geometry was acquired using
two commercial 3D structured light scanners in their setup. These
initial works, while very influential, involved a significant amount
of data capture to acquire a face including its appearance. Hence,
more recent works have focused on reducing the amount of acquired

data for high-quality face scans. Ma et al. [2007] introduced polar-
ized spherical gradient illumination for acquisition of the separated
diffuse and specular albedos and photometric normals using just
eight photographs, and reconstructed high quality facial geometry
including skin mesostructure as well as realistic rendering with
hybrid normal mapping. Ghosh et al. [2008] further extended the
acquisition method to practically acquire layered facial reflectance
within a capture budget of 20 photographs (burst mode of DSLR),
using a combination of polarization and structured lighting. The ac-
quisition method of Ma et al. was however restricted to just a frontal
stereo pair of cameras due to the view-dependent polarization of the
LED sphere employed for diffuse-specular separation. This was later
extended to multi-view capture with polarized gradient illumination
by Ghosh et al. [2011]. They employed two orthogonal polariza-
tion patterns (lines of latitude and longitude) on the LED sphere,
allowing fast capture (due to static polarizers on the cameras) and
separation of diffuse and specular reflectance from multiple view-
points around the equator of the LED sphere. Graham et al. [2013]
further extended the technique to acquire facial microgeometry of
1 cm2 skin patches. They employed constrained texture synthesis
to then add microscale details to underlying skin meso-structure
and also fit micro-scale skin BRDF for increased realism of skin
rendering. Recently, Kampouris et al. [2018] have proposed em-
ploying binary spherical gradient illumination in conjunction with
color-space analysis for efficient acquisition of separated diffuse
and specular reflectance and photometric normals. While enabling
faster acquisition than polarized spherical gradients (half the num-
ber of photographs), the method still requires active illumination
using an LED sphere for acquisition. Closer to our approach, Fyffe
et al. [2016] have proposed a solution for static facial capture that
employs consumer hardware for near-instant capture of facial ge-
ometry and reflectance. Their setup uses a combination of 24 DSLR
cameras and 6 flashes that are triggered in sequence within a few
milliseconds. However, the approach does not extend to dynamic
facial appearance capture due to active triggering mechanism of
the cameras and flash units. In comparison, our method relies on a
simpler more practical single-shot capture setup while estimating
high quality facial reflectance including spatially varying specular
albedo and an improved diffuse albedo accounting for subsurface
scattering. Moreover, our method can be flexibly applied to dynamic
facial capture.

Active capture of dynamic appearance: Hawkins et al. [2004] ex-
tended the approach of [Debevec et al. 2000] to acquire dynamic
facial reflectance fields of a set of key facial poses, and interpo-
lated between the reflectance fields of these key poses at run-time
for synthesizing relightable facial animations. Wenger et al. [2005]
employed an LED sphere and high speed photography to acquire
the response to a dense set of illumination conditions in order to
relight each frame of a target facial performance. They also em-
ployed the data to estimate photometric surface normals, and dif-
fuse and specular albedos for relighting of the facial performance.
These above techniques relied on dense capture of dynamic facial
reflectance which can be impractical. To reduce the acquired data,
Ma et al. [2008] employed spherical gradient illumination in con-
junction with high speed acquisition to capture short sequences
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of facial performances (formation of expressions). They employed
the acquired facial displacement maps (extracted from photometric
normal) in conjunction with marker-based correspondences to fit
polynomial functions as a way of encoding facial mesostructure
dynamics during a performance. Fyffe et al. [2011] instead applied
complementary spherical gradient illumination based alignment of
Wilson et al. [2010] in conjunction with high speed photography
to acquire longer facial performance sequences, and employed a
heuristics based diffuse-specular separation on the acquired data to
obtain albedo and normal maps for rendering. Nagano et al. [2015]
have extended [Graham et al. 2013] to acquire microgeometry of
various skin patches under stretch and compression and employed
the acquired data for efficient real-time rendering of dynamic facial
microgeometry using texture space filtering. For true video-rate
dynamic capture, Fyffe & Debevec [2015] have proposed employing
spectral multiplexing with polarized spherical gradient illumina-
tion (using an RGB LED sphere) for facial performance capture.
This has similarities with our setup in requiring multiple polar-
ized cameras per acquisition viewpoint, but requires a much more
complicated lighting and capture hardware while acquiring a spec-
trally saturated diffuse albedo due to RGB illumination. Gotardo et
al. [2015] have proposed a simpler binocular setup with spectral and
temporal multiplexing of nine light sources to compute dynamic
diffuse albedo and normal maps. They however do not estimate
any specular reflectance. Most recently, Meka et al. [2019] have
proposed efficient dynamic performance relighting using capture
with RGB-multiplexed unpolarized spherical gradient illumination
and complement pairs which are then used as input to a convo-
lutional deep network to predict relit facial performance under a
novel lighting. This however requires a database of acquired facial
reflectance fields in multiple expressions to train the deep network,
and does not result in reflectance maps or geometry that can be
used in a standard rendering pipeline.

Passive capture of facial geometry and texture: With advancement
in photogrammetry techniques, passive facial acquisition has be-
come a popular alternative to active capture techniques that require
specialized acquisition setups. Besides simplifying static facial cap-
ture, such acquisition is particularly well suited for dynamic facial
performance capture without requiring high frame rate acquisition
and synchronization. A popular approach has been multi-view fa-
cial capture under uniform passive illumination [Beeler et al. 2010;
Bradley et al. 2010], with such a capture providing estimate of an
albedo texture under flat lit illumination for rendering purposes
besides facial geometry reconstruction based on multi-view stereo.
Beeler et al. [2010] further augmented the reconstructed facial base
geometry with mesostructure detail extracted from the albedo tex-
ture using a high-pass filter. They later extended the approach for
reconstructing facial performances with drift-free tracking over long
sequences using anchor frames [Beeler et al. 2011]. The method pro-
duces very good qualitative results for facial geometry. However,
the estimated albedo is not completely diffuse and contains a small
amount of baked-in specular reflectance. The approach has been
extended to static facial geometry and performance capture with
simpler binocular [Valgaerts et al. 2012] and monocular setups [Cao
et al. 2015; Garrido et al. 2013; Ichim et al. 2015; Shi et al. 2014] in

uniform, uncontrolled illumination settings including indoor and
outdoor environments. These methods assume that skin reflectance
is Lambertian, and employ low-frequency lighting estimation with
spherical harmonics for geometric refinement. In addition, they
strongly rely on facial geometry priors (e.g. blendshape models)
and although shading-based geometry refinement reveals facial
wrinkles at larger scales, they cannot resolve fine scale detail. Im-
portantly, these method do not provide a high quality estimate of
facial reflectance.

Passive facial capture with reflectance: Fyffe et al. [2014] employed
a database of high quality facial scans (acquired using the method
of [Ghosh et al. 2011]) to augment a monocular video sequence of a
facial performance acquired under passive illumination with high
resolution facial geometry and reflectance maps for realistic ren-
dering. The approach achieves impressive qualitative results but re-
quires a dense set of facial scans (in different poses) with reflectance
information of the same target subject. Saito et al. [2017] first pro-
posed a deep learning approach for data-driven inference of high
resolution facial texture map of an entire face for realistic rendering
from an input of a single low resolution face image with partial
facial coverage. They further extended this to inference of facial
mesostructure given a diffuse albedo texture [Huynh et al. 2018], and
complete facial reflectance and displacement maps besides albedo
texture given partial facial image as input [Yamaguchi et al. 2018].
These approaches focus on simple creation of a believable digital
avatar rather than accurate reconstruction of facial appearance, and
rely on a facial database acquired with polarized spherical gradients
for training the deep network for super-resolution and augmen-
tation tasks. Closest to our work is that of Gotardo et al. [2018]
who employ a passive facial appearance capture setup to estimate
dynamic facial reflectance including time varying changes in dif-
fuse albedo and changes in specular reflectance and mesostructure
due to skin deformation during facial performance. Their method
however requires an initialization of the reflectance estimate using
a video-sequence capture for a neutral expression where the subject
has to rotate their face in various directions. In contrast, our capture
solution is truly single-shot for geometry and reflectance estimation
and can be naturally extended to dynamic capture without requir-
ing cumbersome subject motion for any initialization. Furthermore,
thanks to our approach of view-multiplexing with cross and non-
cross polarization, our method is capable of better separating diffuse
and specular components, leading naturally to better surface nor-
mals. Additionally our approach improves sharpness of the diffuse
albedo for rendering by accounting for subsurface scattering in
skin, and we improve reflectance estimation by optimizing for the
per-subject specular lobe. In this respect, our proposed single-shot
capture method is the first to target the quality of reflectance usually
acquired by state-of-the-art active illumination systems.

3 BASE GEOMETRY CAPTURE AND PRE-PROCESSING
This section describes the simple capture setup we used to acquire fa-
cial images, followed by the initial geometry reconstruction pipeline,
and the preprocessing steps that are performed prior to the main
process of simultaneous appearance estimation and geometry re-
finement, described in Section 4.
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Cross-Polarized Camera
Parallel-Polarized Camera
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Fig. 2. Our simple capture setup consists of 12 DSLR cameras and 4 flashes,
all with linear polarization filters (a). Of these, 8 cameras (4 stereo pairs) have
parallel polarization (b), and 4 have cross-polarization (c). We reconstruct
the base geometry from the 4 stereo pairs (d) and use all 12 cameras for
appearance estimation and geometry refinement.

3.1 Capture Setup
Our design goal is to operate with a simple configuration of in-
expensive consumer-level hardware, making our approach widely
applicable in both high-end and low-budget scenarios alike. Our
single-shot capture setup consists of 4 studio flashes and 12 DSLR
cameras arranged as 4 triplets (see Fig. 2). We apply linear polarizing
filters to both flashes (horizontal) and cameras (horizontal or verti-
cal). Each camera triplet consist of (i) a narrow baseline stereo pair
with polarization filters parallel to the flash filters, and (ii) a central
camera that is cross-polarized with respect to the lights, a common
approach for canceling specular reflection [Ghosh et al. 2011]. We
therefore dedicate a larger number of (parallel-polarized) cameras
to capture view-dependent specular signal and full surface detail,
which we have found to provide for better stereo matching and
triangulation under soft illumination. Figure 2 shows this camera
configuration and the full set of 12 images recorded for one shot of
a target subject. This particular setup consists of Canon Rebel T5
cameras with EF-S 60mm f/2.8 lenses and Elinchrom D-Lite RX 4
flashes with soft-boxes, leading to a total hardware cost of below
$10K for the entire setup. However, we note that the system is not
limited to operate with such specific choice of hardware and can di-
rectly accommodate cheaper or more expensive models. In Section 5
we also show results from an alternative setup, for dynamic facial
performance capture, highlighting the flexibility of our method.

3.2 Initial Geometry Reconstruction
Facial geometry is reconstructed using the 8 parallel-polarized cam-
eras arranged as 4 stereo pairs. We use the stereo method of Beeler
et al. [2010] but without mesoscopic augmentation, as we perform
our own geometry refinement to capture fine-scale surface details,
as a byproduct of appearance estimation. This geometry refinement

step outputs a displacement map defined in UV texture space; the
UV parameterization also makes it easier to pool together data from
the different cameras for appearance estimation. We therefore re-
quire the initial 3D face mesh to be texture mapped. This step can
be achieved via automatic parameterization methods, but we opted
to manually fit the triangulated raw geometry using a template face
mesh with a well-formed topology, which is a typical step when
creating digital human assets. An example 3D face mesh, after fitting
to the raw geometry, is shown in Fig. 2 (d).

3.3 Input Texture Maps
As both the input and output of our main appearance estimation
step consist of data in the form of UV texture-space maps, we also
compute the following input maps in a preprocessing step, similar
to [Gotardo et al. 2018]: (i) per-camera texture maps containing the
input image data, also encoding the per-camera visibility maps; (ii)
per-camera weights that downweight less reliable data due to high
foreshortening of camera view and due to defocus from shallow
depth of field; and (iii) initial geometry maps comprising of an initial
normal map, an initial vertex map (low-frequency geometry of the
fitted template mesh), and an initial “macro” displacement map from
multiview stereo (with mid-frequency geometry to be refined during
appearance estimation).

3.4 Additional Calibration
We also precompute an environment map encoding the spatial distri-
bution of incoming light from our 4 flash panels. Following standard
practice, we capture an HDR image of a mirror sphere with known
radius, using a frontal camera without polarizer. Given calibrated
cameras, we triangulate the 3D position of the sphere, shoot rays
through the pixels of this HDRI, which are then reflected on the
sphere to yield the environment map [Gotardo et al. 2018]. We also
use the initial face geometry to ray-trace shadow maps to be used
during inverse rendering. Finally, we use a standard Macbeth color
chart to color calibrate the frontal, cross-polarized camera to serve
as reference color space at normalized exposure; all other cameras
are automatically self-calibrated to this color space, as described
in Section 4.2.

4 HIGH-QUALITY APPEARANCE AND GEOMETRY
Given the base geometry of the precomputed template facemesh, the
next step is to simultaneously compute high-quality appearance and
fine-detail geometry maps from the single-shot input. This section
describes our forward rendering models, photometric calibration of
the input data, and estimation method via inverse rendering.

4.1 Appearance and Geometry Models
We model the reflectance of facial skin using a spatially varying,
bidirectional scattering-surface reflectance distribution function
(BSSRDF) [Pharr et al. 2016]. Let xi denote the position of a surface
patch with normal ni , and Li (xi ,ωi ) be the incident light from
direction ωi . The proportion of light that radiates out of a nearby
position xo along the (view) direction ωo is given by our discretized
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Fig. 3. Surface reflection – (a) for parallel-polarized views, specular reflec-
tion vanishes near Brewster’s angle of incidence, which must be accounted
for in inverse rendering for accurate results; (b) our 2-lobe microfacet distri-
bution has stronger tails than the equivalent Blinn-Phong lobe (or Beckmann
with roughness α = 0.27) to better render skin [Walter et al. 2007].

rendering equation,

Lo (xo ,ωo ) =
∑
A

∑
Ω

S(xo ,ωo , xi ,ωi )Li (xi ,ωi )(n⊤i ωi )∆ωi∆Ai (1)

for unoccluded directions ωi ∈ Ω with solid angle ∆ωi and nearby
patches xi ∈ A with area ∆Ai . Our BSSRDF model comprises two
components that define surface (specular) and subsurface (diffuse)
contributions to reflected light,

S(xo ,ωo , xi ,ωi ) = δi jSr (xo ,ωo ,ωi ) + Sd (xo ,ωo , xi ,ωi ), (2)

where the Kronecker delta δi j = 1 if xi = xo . When rendering cross-
polarized views, we model surface reflectance as Sr (xo ,ωo ,ωi ) = 0.
For parallel-polarized views, we use the Cook-Torrance BRDF

Sr (xo ,ωo ,ωi ) = ρs (xo )
D(ωo ,ωi ,no,α)G(ωo ,ωi )F (η,ωo ,ωi )

4(n⊤o ωi )(n⊤o ωo )
, (3)

which is modulated by the spatially varying specular intensity pa-
rameter ρs that captures variability in skin reflectance due to, for
example, surface oiliness. The standard geometry attenuation term is
given byG , and F denotes the Fresnel curve. The index of refraction
for skin is fixed at η = 1.4. Instead of the typically used Fresnel curve
for unpolarized light, we use the Fresnel curve for parallel-polarized
light, Fig. 3(a). This is somewhat important in our setup given the use
of horizontal polarizers on the lightboxes, which results in predom-
inately parallel polarized reflection on the face along the equatorial
directions. The distribution term D(·) = αD12(·) + (1 − α)D48(·) is a
linear combination of two Blinn-Phong basis lobes with exponents
12 and 48, Fig. 3(b); it provides slightly stronger tails for more re-
alistic face rendering and enables the estimation of the lobe size
(roughness) α via a linear fit (Section 4.2).

The diffuse reflection term accounts for subsurface scattering and
absorption of light for the given color channel wavelength λ,

Sd (·) =
1
π
Ft (xo ,ωo )ρλ(xo )Rλ(∥xo − xi ∥2)ρλ(xi )Ft (xi ,ωi ), (4)

where Ft is the Fresnel transmittance, ρλ is the (red, green, or blue)
spatially-varying albedo, and Rλ(r ) is the sum-of-Gaussians diffu-
sion profile proposed by [d’Eon et al. 2007]. In our experiments, we
fix the per-channel Gaussian weights as computed to approximate
the three-layer skin model of [Donner and Jensen 2005].

Typically, inverse rendering approaches that do not take into
account subsurface scattering yield blurry normal and albedo esti-
mates with attenuated high-frequency detail. To improve the level
of recovered surface detail, our approach focuses on data from sur-
face (specular) reflectance. Since specular reflection maintains light
polarization, our parallel-polarized cameras filter out half of the
diffuse reflection and effectively increase the specular-to-diffuse
reflection ratio. However, our single-shot approach observes the
skin only under a single illumination condition, and thus the specu-
lar signal alone may not be enough to fully disambiguate normal
estimation. For this reason, we leverage the fact that subsurface
scattering is significantly lower in the blue image channel and esti-
mate fine-scale detail using predominantly specular and blue-diffuse
constraints (see Section 4.3). For this reason, we use diffusion pro-
files that are relative to the typical diffusion observed for a blue
wavelength [d’Eon et al. 2007].

To further constrain the estimation of the normals, we directly
enforce integrability (zero curl) as a hard constraint in our geometry
model. A similar idea was explored by [Gotardo et al. 2018], but their
method required a final post-processing step [Nehab et al. 2005] to
compute an actual displacement map from their estimated normal
field, which typically causes some loss of geometric detail.
We thus parameterize our refined normal field directly in terms

of a displacement map d(u,v), with one surface patch per texel in
UV texture space. This displacement map is optimized for from the
outset and can be trivially applied to emboss fine-detail geometry
onto our initially fitted template face mesh. Given the input vertex
and normal maps of the template mesh, let n̂, t̂u , and t̂v denote a
texel’s unit normal and tangent vectors (computed by simple finite
differences). Also, let ŝu and ŝv be the original lengths of the tangent
vectors, encoding texel size. Then, after applying the desired high-
detail displacement map d(u,v), the non-unit normal of the new,
refined mesh can be expressed from the new, non-unit tangents as

n =
(
ŝu t̂u + du n̂

)
×
(
ŝv t̂v + dv n̂

)
(5)

=

t̂u t̂v n̂


ŝu 0 0
0 ŝv 0
0 0 ŝu ŝv



−du
−dv
1

 , (6)

where du and dv are the partial derivatives of d(u,v) computed via
finite differencing. The simple form in Eq. 5 is achieved by leveraging
the fact that a triangle in the initial template mesh spans multiple
texels in its normal map, resulting in locally constant n̂. Another
key difference to [Gotardo et al. 2018] is in properly accounting
for texel size, which improves scaling of constraints and allows for
optimization in a coarse-to-fine, multi-resolution manner for better
convergence.

4.2 Photometric Self Calibration
Before computing appearance and geometry refinement, we must
account for the differences in color space (exposure, black level)
and polarization filter attenuation amongst all cross- and parallel-
polarized cameras. Often, color calibration using a standard color
chart can be mislead by specular reflection when both view and
light directions are at an oblique angle. It can also be difficult and
laborious to properly measure per-camera attenuation of image
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intensity due to the use of polarization filters. Therefore, to facilitate
the use of our system, we introduce an automatic self calibration
procedure that uses the captured face itself along with renderings
of our model as the calibration target.

Our technique requires that only one camera be color calibrated
towards a color chart, to provide a reference color space that will be
matched by all cameras. We take as reference the cross-polarized
camera in the frontal stereo pair. Then, each of the other three cross-
polarized cameras is automatically calibrated to match the colors
of the frontal one, by estimating a 3 × 4 affine color matrix in a
least-squares sense.
The other 8 cameras are parallel polarized and exhibit strongly

view-dependent specular reflection. To color calibrate each of these
cameras, we compute an initial rendering of our appearance model
and choose it as the calibration target, to ensure that each camera
agrees with the model as closely as possible. More specifically, given
the initial geometry of our template face mesh, for each camera c
we render two specular reflection images, Sc1 (x) and Sc2 (x), one for
each of the specular basis lobes in our BRDF model. The diffuse
term Ixp (x) is the image of the closest cross-polarized camera.

The self-calibration procedure of each parallel-polarized camera
image Ic (x) estimates the camera color matrix Mc satisfying

Mc

[
Ic (x)
1

]
≈

[
Sc1 (x) Sc2 (x) Ixp (x)

] 
w1
w2
1

 , ∀c,∀x . (7)

The specular weights w1 > 0 and w2 > 0 are related to our BRDF
parameters in Eq. 3. That is, specular intensity ρs = w1 +w2 and
specular lobe size α = w1/(w1+w2). Since these weights are initially
unknown for the given face, self-calibration estimates them (glob-
ally) in addition to the 8 matrices Mc via alternated least squares.

We initializew1 andw2 using known measurements of facial skin
reflectance [Weyrich et al. 2006] and observe convergence within
10 iterations. As a by-product of self calibration, we compute the
initial global estimates ρs0 and α0 that can be used to regularize
per-texel estimates in the subsequent, main inverse rendering step.

4.3 Inverse Rendering
This main step for computing appearance and refined geometry
maps operates in UV texture-space using the precomputed geometry
maps and the self-calibrated textures alongside the captured image
data. The output is a multi-channel map Θ(xu , xv ) encoding per-
texel RGB albedo, specular intensity and lobe size, and a fine-detail
displacement map. For each texel x, these parameters are encoded
in the vector of unknowns Θx = {ρr , ρд , ρb , ρs ,α ,d} ∈ R6. Due
to the soft nature of the lighting in our setup (as well as in most
photogrammetry stages), estimating per-texel specular lobe sizes is
an ill-posed problem [Ghosh et al. 2008]. We therefore fix α = α0
as estimated during self calibration. Still, spatial variation in skin
roughness (e.g. due to skin stretch) are partially captured in the
computed specular intensity and displacement maps.
To compute the optimal parameter map Θ, we implemented an

auto-differentiable renderer that seeks to match the input image
data Ic (x) of all 12 cameras c as closely as possible. This is done by

minimizing the energy (loss) term,

Eimд(Θ) =
∑
x

∑
c
Wc (x)

Ic (x) − Lo (x,ωc )
2
2
, (8)

where the rendered texel colors Lo (·) are given by our BSSRDF
model in Eq. 1. The precomputed per-camera weight mapsWc (x)
provide a measure of confidence in the data due to defocus and view
foreshortening. By themselves, the data terms in Eq. 8 may not be
sufficient to completely constrain all parameters of all texels. We
thus introduce additional regularization constraints that are needed
to disambiguate parameter estimation in small regions of the face.
The overall energy term minimized during inverse rendering is

min
Θ

Eimд(Θ) + λ1
d − d0

2
F + λ2

∇d2F (9)

+ λ3
ρs − ρs0

2
F + λ4

∇ρs 2F .
The refined displacement map is weakly constrained to be close to
the initial one, d0(u,v), as it only updates high-frequency geometry
components of the template face mesh (λ1 = 0.03). A small 3 × 3
Laplacian operator (∇) is also applied to ensure smoothness in un-
derconstrained regions (λ2 = 0.02). Similarly, we regularize specular
intensity towards the global, self-calibrated value ρs0 in undercon-
strained areas where specular reflection is very weak (λ3 = 0.03).
These areas often include the extreme sides of the face (when there
is no illumination from behind), underneath the jaw and in con-
cave regions (multiple indirect bounces of light are not accounted
for). We initially apply a strong Laplacian operator to smooth the
specular intensity map (λ4 = 0.3), which forces fine-detail surface
geometry to be explained mostly by the displacement map. To im-
prove convergence and avoid loss of geometric detail, we account
for the wavelength dependence of subsurface scattering and ap-
ply different weights for each color channel of the energy in Eq. 8,
wR = 0.1,wG = 0.3,wB = 1.0. Upon convergence, we fix the dis-
placement map and continue optimization with uniform channel
weights and disabled Laplacians. This final step fits sharp albedo
and allows specular intensity to also model sharp specular reflection
occlusion effects that were not explained by the optimized geometry.
To compute displacement maps with stronger mid-frequencies

(e.g. deeper skin wrinkles and creases, larger moles), appearance and
geometry optimization are computed in a coarse-to-fine strategy,
with results first computed at lower resolutions and then used to
initialize optimization at higher resolutions. Typically, optimization
begins with 2K ×2K and ends with 4K or 8K maps, upsampling with
a factor of 2x. We employ the non-linear Ceres solver [Agarwal et al.
2016] to optimize for Θ. Convergence to poor local minima has not
been observed, but surface detail can be less sharp with insufficient
iterations. Solving at 4K resolution takes approximately 45 minutes
on an 8-core 2019 MacBook Pro laptop. The coarse-to-fine solver
also reduces runtime by better initializing high-resolution levels.

5 EXPERIMENTAL RESULTS
In this section, we assess the quality of the results achieved by
our method by showing the high quality of reconstruction of both
geometry and appearance across subjects of different ethnicities,
ages and genders, while they performed different facial expressions.
We also illustrate how the captured fine-detail skin surface and
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Reference Render Di�use Albedo Specular Intensity Normals Geometry Render Error (%)
0 10

Fig. 4. From a single shot, the proposed system reconstructs geometry and high-quality appearance maps: RGB albedo, specular intensity, and displacement
map with fine surface detail. These maps lead to realistic renderings that closely match the real face images, as indicated by the small rendering errors
(averaged over the RGB channels, relative to range of image intensities).
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a) b)

c) d)

Fig. 5. We validate our result by re-rendering a face under novel illumination
conditions, comparing to ground truth captured data. The optimized result
captured under all 4 flashes (a) is relit with the right side flash removed
(b), only the top flash on (c), as well as top and bottom flashes on (d). Our
re-render closely matches the ground truth images.

subsurface scattering effects lead to realistic renderings of their
digital doubles also in different illumination conditions.
Our method outputs a set of appearance maps, namely diffuse

albedo and specular intensity, and a tangent-space displacement
map, as well as global parameters for our two-lobe specular BRDF
model. Figure 4 shows these maps projected onto our base mesh for
seven different subjects in a variety of facial expressions. Fine-scale
geometry is shown both as a normal map and as displaced high-
resolution mesh. As demonstrated in the first two columns, these
maps can be used with our rendering model to generate images that
faithfully reproduce the appearance of the captured real faces.
To assess the generalization quality of our results, we also com-

pare our renderings to actual face images captured under new il-
lumination conditions. Figure 5 shows three additional, real face
images that were captured under different illumination conditions.
The renderings generated for these novel illumination conditions
closely matches the real images, even though these conditions were
not used for the inverse rendering step.
In the next experiment, we assess the importance of modeling

subsurface scattering, an effect that is often neglected in inverse
rendering methods for face capture. When subsurface scattering is
ignored, its natural blurring effect is baked into normals and the
albedo map. This leads to poor recovery of detail in these maps, de-
spite reasonably good fits (re-renderings) for mostly diffuse objects.
For shinier surfaces, highlights are rendered incorrectly by these
blurry normals. Conversely, even with accurate sharp recovery of
the normals, the highlights will appear correct but the diffuse layer
will appear unnatural for skin without subsurface scattering, leading
to poor re-renderings as illustrated in the ablation result in Fig. 6.
Subsurface scattering is indeed important to give skin its soft and
organic appearance. Furthermore, modeling subsurface scattering
is important because accounting for its spatial low-pass filtering ef-
fect allows other computed appearance maps to become sharper. In
our experiments, we observed that the computed RGB albedo maps

a)

b)

Fig. 6. Subsurface scattering is often neglected in facial appearance capture
and can lead to unnatural rendering when not accounted for (a); our model
considers this effect explicitly and can more realistically reproduce the soft,
organic appearance of skin (b).

become sharper when this phenomenon is accounted for, as shown
in Fig. 7. Thus, our method not only estimates sharper normal and
albedo maps, but also renders with high fidelity both diffuse and
specular layers since we account for subsurface scattering.

Fig. 7. Subsurface scattering, if not accounted for, can lead to a loss of detail
in the recovered RGB albedo (left); by modeling this effect we can recover
sharper albedo maps (right).

We also compare the quality of our appearance capture results
with those computed with the algorithm of Gotardo et al. [2018].
Although their capture method also operates under constant illumi-
nation, their approach requires a sequence of about 20 images of a
neutral face, rotating relative to the lights, to compute the neutral
albedo map since they factorize diffuse and specular signals algo-
rithmically. Separating these signals algorithmically is extremely
challenging, especially in a single-shot, since many more observa-
tions are required. When applied for single-shot capture, fitting
only to our parallel polarized data, their results show significant
artifacts and traces of specular reflection baked into the albedo. In
contrast, our maps show much cleaner results since we employ
cross-polarization to cancel the specular signal physically (Fig. 8).
Additionally, detail loss is also observed as they suffer from motion
blur and do not model subsurface scattering.
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Fig. 8. Single-shot appearance capture of subject with darker skin tone and shiny forehead, showing strong specular highlights. On single-shot data, the
(multi-frame) method of Gotardo et al. [2018] shows significant artifacts and specular residual in the albedo, as correct diffuse-specular layer separation is
more difficult to achieve algorithmically. As the re-render errors illustrate, our new method can more faithfully reproduce the reference image appearance.

To assess the value of our geometry model and the proposed
coarse-to-fine inverse rendering approach, the ablation study in Fig. 9
shows a visual comparison of the recovered level of fine surface
detail when computing the displacement map directly at final 4K
resolution (Fig. 9 (left)) versus when estimating in a coarse-to-fine
manner, starting at 2K (Fig. 9 (right)). As illustrated in the figure,
coarse-to-fine estimation improves the level of recovered geometric
detail, providing more pronounced features such as deeper wrinkles
and expression lines. The direct approach in Fig. 9 (left) is closer
to that of Gotardo et al. [2018], which in addition require post-
processing to convert the estimated normals to actual geometry,
leading to further loss of detail. Coarse-to-fine allows to solve for
even higher resolutions, where each additional resolution adds finer
scale detail as shown in Fig. 10 at the example of an 8K zoom in.
An additional comparison is given in Fig. 11, which compares the
level of recovered detail against the popular dark-is-deep approach
of [Beeler et al. 2010]. Here we see that the proposed method pro-
duces crisper geometric detail, whereas the dark-is-deep heuristic
is not physically accurate and can be mislead by skin pigmentation.

The effect of increasing or decreasing the two geometric regular-
ization weights {λ1,λ2} in Eq. 9 is illustrated in Fig. 12. Increased
weights provide smoother geometry that is closer to the initially
fitted, low-polygon template face mesh in Fig. 2. Less regularization
provides sharper geometric detail butmay allow localized artifacts to
be introduced in under-constrained skin patches. Thus, an artist us-
ing our system to build a digital human could opt for lower weights
and increased level of detail, at the cost of requiring manual touch
up in localized areas. We note that no such post-processing was
applied to any of the results shown in this paper.

An important aspect of our single-shot capture system is that it
can be readily applied to dynamic sequences, containing for example
facial performance, by recovering the appearance of each frame
independently. In contrast to common polarization-based capture
systems, we do not require temporal changes like active lighting or
fast switching of polarization filters, as we can capture with constant,
uniform illumination. This leads to better comfort for the actor and
also maintains accuracy of markerless mesh tracking and motion
capture using existing solutions [Beeler et al. 2011]. As a result, our
proposed method enables dynamic face capture at camera frame
rates, in full temporal correspondence, and with good temporal
stability. This is illustrated in Fig. 13 and in the supplementary video.
Here, instead of DSLR cameras and studio flashes, our capture setup
included 12 machine vision cameras (20MP Ximea, also arranged
as in Fig. 2) and constant lighting from horizontally polarized LED
banks. Results were computed with the method as described above,
showing the flexibility of the approach.

The ultimate goal of these digital assets is the ability to re-render
them under novel illumination conditions to allow to integrate these
digital character into arbitrary virtual scenes as shown in Fig. 14.

6 DISCUSSION
In this paper, we have presented a new light-weight face capture
system for high-quality acquisition of both facial geometry and
appearance. Typically, high-quality appearance acquisition has been
performed only in expensive and complex capture stages that time-
multiplex light with different polarization, while the face is observed
by several cameras with equally oriented polarization filters. In
contrast, we propose a system with constant lighting under a single
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Fig. 9. Direct displacement map estimation at 4K resolution (left). Our
coarse-to-fine optimization (right) provides better initialization at the final
resolution, leading to more pronounced detail in shorter runtimes, as ex-
pected from a multi-resolution solver of differential equations. The RMSE
of the re-rendered blue channel (sharpest channel), averaged over all views,
is also smaller (0.0137) than that of the direct solver (0.0143).

Fig. 10. Most results of the paper are using 4K appearance maps, but the
system can also solve for higher resolutions, such as 8K in this zoom in.

polarization state (horizontal) and cameras that have different filter
orientations. As a result, rather than operating in a time-multiplexed
way, our system performs “view-multiplexed” capture of polarized
light from a single exposure. It can be assembled from standard, off-
the-shelf hardware components (from high- to low-end models) and,
therefore, can be readily integrated into current low-cost, passive
photogrammetry solutions that are already in widespread use. We
believe the proposed system has the potential to democratize the
creation of digital human assets, making it affordable also to lower-
budget projects both inside and outside the entertainment industry.

We demonstrated the high-quality output of our new system on
a number of human subjects with different gender, ages, and skin

Fig. 11. Comparison of geometric detail against the popular dark-is-deep
method proposed by [Beeler et al. 2010] (top), which is a heuristic approach
that is not optimized for re-rendering and has been found to produce in-
accurate results [Ghosh et al. 2011]. Our method is physically motivated
and recovers crisper and more realistic geometric detail (bottom), leading
to high-fidelity rerenderings as shown in Fig. 4.

typology, leading to realistic rendering of their captured digital dou-
bles. However, the system is not without its limitations. First, skin
roughness (size of specular lobe) cannot be estimated on a per-texel
basis due to the typically soft nature of lighting in photogramme-
try setups such as ours [Ghosh et al. 2008]. As a result, some face
regions may be rendered slightly more/less rough in comparison
to the real image and specular intensity compensates for the fixed-
sized specular lobe. Figure 4 also shows other localized rendering
artifacts: the nose ring (and other accessories) presents less accurate
base geometry and its appearance diverges more from the assumed
skin model; also, correctly fitting the base geometry of eye lids
is still challenging and mesh self-intersection can lead to inaccu-
rate shadow maps and rendering results. Although our appearance
model explicitly accounts for subsurface scattering effects, we use a
fixed diffusion profile taken from the literature [d’Eon et al. 2007].
In practice, the diffusion profile varies across subjects, especially
with age, and a person-specific profile estimate could lead to more
realistic results. Finally, while we focus on modeling the appearance
of human skin, an exciting direction in recent work is to realistically
capture the likeness of the entire human head (including hair, teeth,
eyes) with a single data-driven approach [Lombardi et al. 2019; Thies
et al. 2019]. Nevertheless, our approach already provides accessible,
high-fidelity skin appearance data that offers direct practical value
for VFX and video game productions, and can also be used to train
and advance future deep learning methods, which are still limited
in terms of spatial resolution and level of detail.
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Fig. 12. Effect of regularization weights (λ1,λ2) on the recovered geometric
detail: high-frequency detail is attenuated with increasing regularization
(left); wrinkles and creases become deeper and sharper with less regulariza-
tion, which can also introduce small reconstruction artifacts (right).
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