Lightweight Eye Capture Using a Parametric Model
We present the first approach for high-quality lightweight eye capture, which leverages a database of pre-captured eyes to guide the reconstruction of new eyes from much less constrained inputs, such as traditional single-shot face scanners or even a single photo from the internet.
July 11, 2016
ACM SIGGRAPH 2016
Authors
Pascal Berard (Disney Research/ETH Joint PhD)
Derek Bradley (Disney Research)
Markus Gross (Disney Research/ETH Zurich)
Thabo Beeler (Disney Research)
Lightweight Eye Capture Using a Parametric Model
Facial scanning has become ubiquitous in digital media, but so far most efforts have focused on reconstructing the skin. Eye reconstruction, on the other hand, has received only little attention, and the current state-of-the-art method is cumbersome for the actor, time-consuming, and requires carefully setup and calibrated hardware. These constraints currently make eye capture impractical for general use. We present the first approach for high-quality lightweight eye capture, which leverages a database of pre-captured eyes to guide the reconstruction of new eyes from much less constrained inputs, such as traditional single-shot face scanners or even a single photo from the internet. This is accomplished with a new parametric model of the eye built from the database, and a novel image-based model fitting algorithm. Our method provides both automatic reconstructions of real eyes, as well as artistic control over the parameters to generate user-specific eyes.