Disney Research Studios
  • Research
    • Machine Learning
    • Visual Computing
    • Data Sets
  • Publications
  • People
    • Leadership
    • Research Staff
    • Support Teams
    • Alumni
  • Careers
  • Outreach
  • About Us
Select Page
Neural Frame Interpolation for Rendered Content

Neural Frame Interpolation for Rendered Content

by Martina Megaro | Nov 30, 2021 | Video Processing, Visual Computing

Neural Frame Interpolation for Rendered Content   We propose solutions for leveraging auxiliary features to obtain better motion estimates, more accurate occlusion handling, and to correctly reconstruct non-linear motion between keyframes. November 30, 2021ACM...
Rendering with Style: Combining Traditional and Neural Approaches for High-Quality Face Rendering

Rendering with Style: Combining Traditional and Neural Approaches for High-Quality Face Rendering

by Martina Megaro | Nov 30, 2021 | Capture, Machine Learning, VFX

Rendering with Style: Combining Traditional and Neural Approaches for High-Quality Face Rendering   We propose to combine incomplete, high-quality renderings showing only facial skin with recent methods for neural rendering of faces, in order to automatically and...
Deep Compositional Denoising for High-quality Monte Carlo Rendering

Deep Compositional Denoising for High-quality Monte Carlo Rendering

by Martina Megaro | Jul 30, 2021 | Rendering, Visual Computing

Deep Compositional Denoising for High-quality Monte Carlo Rendering   We propose a deep-learning method for automatically decomposing noisy Monte Carlo renderings into components that kernel-predicting denoisers can denoise more effectively. June 29, 2021Eurographics...
Adaptive Convolutions for Structure-Aware Style Transfer

Adaptive Convolutions for Structure-Aware Style Transfer

by Martina Megaro | Jun 19, 2021 | Capture, Machine Learning, VFX

Adaptive Convolutions for Structure-Aware Style Transfer   We propose Adaptive convolutions; a generic extension of AdaIN, which allows for the simultaneous transfer of both statistical and structural styles in real time. June 19, 2021IEEE Conference on Computer...
Lossy Image Compression with Normalizing Flows

Lossy Image Compression with Normalizing Flows

by Martina Megaro | May 8, 2021 | Video Processing, Visual Computing

Lossy Image Compression with Normalizing Flows   We propose a deep image compression method that is similarly able to go from low bit-rates to near lossless quality, byleveraging normalizing flows to learn a bijective mapping from the image space toa latent...
« Older Entries
Next Entries »
© Copyright DisneyResearch|Studios